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11.1 Finger Searching

One of the most studied problems in computer science is the problem of maintaining a
sorted sequence of elements to facilitate efficient searches. The prominent solution to the
problem is to organize the sorted sequence as a balanced search tree, enabling insertions,
deletions and searches in logarithmic time. Many different search trees have been developed
and studied intensively in the literature. A discussion of balanced binary search trees can

This chapter is devoted to finger search trees, which are search trees supporting fingers,
i.e., pointers to elements in the search trees and supporting efficient updates and searches
in the vicinity of the fingers.

If the sorted sequence is a static set of n elements then a simple and space efficient
representation is a sorted array. Searches can be performed by binary search using 1+�log n	
comparisons (we throughout this chapter let log x to denote log2 max{2, x}). A finger search
starting at a particular element of the array can be performed by an exponential search by
inspecting elements at distance 2i − 1 from the finger for increasing i followed by a binary
search in a range of 2�log d� − 1 elements, where d is the rank difference in the sequence
between the finger and the search element. In Figure 11.1 is shown an exponential search
for the element 42 starting at 5. In the example d = 20. An exponential search requires
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FIGURE 11.1: Exponential search for 42.
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2 + 2�log d	 comparisons.
Bentley and Yao [5] gave a close to optimal static finger search algorithm which performs∑log∗ d−1
i=1 log(i) d + O(log∗ d) comparisons, where log(1) x = log x, log(i+1) x = log(log(i) x),

and log∗ x = min{i | log(i) x ≤ 1}.

11.2 Dynamic Finger Search Trees

A dynamic finger search data structure should in addition to finger searches also support the
insertion and deletion of elements at a position given by a finger. This section is devoted to
an overview of existing dynamic finger search data structures. Section 11.3 and Section 11.4
give details concerning how three constructions support efficient finger searches: The level
linked (2,4)-trees of Huddleston and Mehlhorn [26], the randomized skip lists of Pugh [36, 37]
and the randomized binary search trees, treaps, of Seidel and Aragon [39].

Guibas et al. [21] introduced finger search trees as a variant of B-trees [4], supporting
finger searches in O(log d) time and updates in O(1) time, assuming that only O(1) movable
fingers are maintained. Moving a finger d positions requires O(log d) time. This work was
refined by Huddleston and Mehlhorn [26]. Tsakalidis [42] presented a solution based on
AVL-trees, and Kosaraju [29] presented a generalized solution. Tarjan and van Wyk [41]
presented a solution based on red-black trees.

The above finger search tree constructions either assume a fixed constant number of fin-
gers or only support updates in amortized constant time. Constructions supporting an
arbitrary number of fingers and with worst case update have been developed. Levcopoulos
and Overmars [30] presented a search tree that supported updates at an arbitrary posi-
tion in worst case O(1) time, but only supports searches in O(log n) time. Constructions
supporting O(log d) time searches and O(log∗ n) time insertions and deletions were devel-
oped by Harel [22, 23] and Fleischer [19]. Finger search trees with worst-case constant
time insertions and O(log∗ n) time deletions were presented by Brodal [7], and a construc-
tion achieving optimal worst-case constant time insertions and deletions were presented by
Brodal et al. [9].

Belloch et al. [6] developed a space efficient alternative solution to the level linked (2,4)-
Their solution allows a single finger,

that can be moved by the same performance cost as (2,4)-trees. In the solution no level links
and parent pointers are required, instead a special O(log n) space data structure, hand, is
created for the finger that allows the finger to be moved efficiently.

Sleator and Tarjan introduced splay trees as a class of self-adjusting binary search trees
supporting searches, insertions and deletions in amortized O(log n) time [40]. That splay
trees can be used as efficient finger search trees was later proved by Cole [15, 16]: Given an
O(n) initialization cost, the amortized cost of an access at distance d from the preceding
access in a splay tree is O(log d) where accesses include searches, insertions, and deletions.
Notice that the statement only applies in the presence of one finger, which always points to
the last accessed element.

All the above mentioned constructions can be implemented on a pointer machine where
the only operation allowed on elements is the comparison of two elements. For the Random
Access Machine model of computation (RAM), Dietz and Raman [17, 38] developed a finger
search tree with constant update time and O(log d) search time. This result is achieve by
tabulating small tree structures, but only performs the comparison of elements. In the same
model of computation, Andersson and Thorup [2] have surpassed the logarithmic bound in

the search procedure by achieving O
(√

log d
log log d

)
query time. This result is achieved by

© 2005 by Chapman & Hall/CRC

trees of Huddleston and Mehlhorn, see Section 11.3.



Finger Search Trees 11-3

considering elements as bit-patterns/machine words and applying techniques developed for
the RAM to surpass lower bounds for comparison based data structures. A survey on RAM

11.3 Level Linked (2,4)-Trees

In this section we discuss how (2,4)-trees can support efficient finger searches by the intro-
duction of level links. The ideas discussed in this section also applies to the more general
class of height-balanced trees denoted (a, b)-trees, for b ≥ 2a. A general discussion of height

(a, b)-trees can be found in the work of Huddleston and Mehlhorn [26, 32].
A (2,4)-tree is a height-balanced search tree where all leaves have the same depth and all

internal nodes have degree two, three or four. Elements are stored at the leaves, and internal
nodes only store search keys to guide searches. Since each internal node has degree at least
two, it follows that a (2,4)-tree has height O(log n) and supports searches in O(log n) time.

An important property of (2,4)-trees is that insertions and deletions given by a finger
take amortized O(1) time (this property is not shared by (2, 3)-trees, where there exist
sequences of n insertions and deletions requiring Θ(n log n) time). Furthermore a (2,4)-tree
with n leaves can be split into two trees of size n1 and n2 in amortized O(log min(n1, n2))
time. Similarly two (2,4)-trees of size n1 and n2 can be joined (concatenated) in amortized
O(log min(n1, n2)) time.

To support finger searches (2,4)-trees are augmented with level links, such that all nodes

augmented with level links. Note that all edges represent bidirected links. The additional
level links are straightforward to maintain during insertions, deletions, splits and joins of
(2,4)-trees.

To perform a finger search from x to y we first check whether y is to the left or right of x.
Assume without loss of generality that y is to the right of x. We then traverse the path
from x towards the root while examining the nodes v on the path and their right neighbors
until it has been established that y is contained within the subtree rooted at v or v’s right
neighbor. The upwards search is then terminated and at most two downwards searches for
y is started at respectively v and/or v’s right neighbor. In Figure 11.2 the pointers followed
during a finger search from J to T are depicted by thick lines.

x y

EA B C G J KI M O TRQ V X Z Ø

FD L N S W Æ

H U Y

P

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Æ Ø Å

FIGURE 11.2: Level linked (2,4)-trees.

The O(log d) search time follows from the observation that if we advance the upwards
search to the parent of node v then y is to the right of the leftmost subtree of v′s right

© 2005 by Chapman & Hall/CRC

with equal depth are linked together in a double linked list. Figure 11.2 shows a (2,4)-tree

dictionaries can be found in Chapter 39.

balanced search trees can be found in Chapter 10. A throughout treatment of level linked
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from the internal node labeled “L N” to the node labeled “H” because from “S” we know
that y is to the right of the subtree rooted at the node “Q R”.

The construction for level linked (2,4)-trees generalizes directly to level linked (a, b)-trees
that can be used in external memory. By choosing a = 2b and b such that an internal
node fits in a block in external memory, we achieve external memory finger search trees
supporting insertions and deletions in O(1) memory transfers, and finger searches with
O(logb n) memory transfers.

11.4 Randomized Finger Search Trees

Two randomized alternatives to deterministic search trees are the randomized binary search
trees, treaps, of Seidel and Aragon [39] and the skip lists of Pugh [36, 37]. Both treaps and
skip lists are elegant data structures, where the randomization facilitates simple and efficient
update operations.

In this section we describe how both treaps and skip lists can be used as efficient fin-
ger search trees without altering the data structures. Both data structures support finger
searches in expected O(log d) time, where the expectations are taken over the random choices
made by the algorithm during the construction of the data structure. For a general intro-

11.4.1 Treaps

A treap is a rooted binary tree where each node stores an element and where each element
has an associated random priority. A treap satisfies that the elements are sorted with
respect to an inorder traversal of tree, and that the priorities of the elements satisfy heap
order, i.e., the priority stored at a node is always smaller than or equal to the priority
stored at the parent node. Provided that the priorities are distinct, the shape of a treap is

a treap storing the elements A,B,. . .,T and with random integer priorities between one and
hundred.

The most prominent properties of treaps are that they have expected O(log n) height,
implying that they provide searches in expected O(log n) time. Insertions and deletions
of elements can be performed in expected at most two rotations and expected O(1) time,
provided that the position of insertion or deletion is known, i.e. insertions and deletions
given by a finger take expected O(1) time [39].

The essential property of treaps enabling expected O(log d) finger searches is that for
two elements x and y whose ranks differ by d in the set stored, the expected length of the
path between x and y in the treap is O(log d). To perform a finger search for y starting
with a finger at x, we ideally start at x and traverse the ancestor path of x until we reach
the least common ancestor of x and y, LCA(x, y), and start a downward tree search for
y. If we can decide if a node is LCA(x, y), this will traverse exactly the path from x to y.
Unfortunately, it is nontrivial to decide if a node is LCA(x, y). In [39] it is assumed that a
treap is extended with additional pointers to facilitate finger searches in expected O(log d)
time. Below an alternative solution is described not requiring any additional pointers than
the standard left, right and parent pointers.

Assume without loss of generality that we have a finger at x and have to perform a finger
search for y ≥ x present in the tree. We start at x and start traversing the ancestor path
of x. During this traversal we keep a pointer � to the last visited node that can potentially

© 2005 by Chapman & Hall/CRC

neighbor, i.e. d is at least exponential in the height reached so far. In Figure 11.2 we advance

uniquely determined by its set of elements and the associated priorities. Figure 11.3 shows

duction to randomized dictionary data structures see Chapter13.
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FIGURE 11.3: Performing finger searches on treaps.

be LCA(x, y). Whenever we visit a node v on the path from x to the root there are three
cases:

(1) v ≤ x, then x is in the right subtree of v and cannot be LCA(x, y); we advance
to the parent of v.

(2) x < v ≤ y, then x is in the left subtree of v and LCA(x, y) is either y or an
ancestor of y; we reset � = v and advance to the parent of v.

(3) x < y < v, then LCA(x, y) is in the left subtree of v and equals �.

Unfortunately, after LCA(x, y) has been visited case (1) can happen ω(log d) times before
the search is terminated at the root or by case (3). Seidel and Aragon [39] denote these
extra nodes visited above LCA(x, y) the excess path of the search, and circumvent this
problem by extending treaps with special pointers for this.

To avoid visiting long excess paths we extend the above upward search with a concurrent
downward search for y in the subtree rooted at the current candidate � for LCA(x, y). In
case (1) we always advance the tree search for y one level down, in case (2) we restart the
search at the new �, and in (3) we finalize the search. The concurrent search for y guarantees
that the distance between LCA(x, y) and y in the tree is also an upper bound on the nodes
visited on the excess path, i.e. we visit at most twice the number of nodes as is on the path
between x and y, which is expected O(log d). It follows that treaps support finger searches
in O(log d) time. In Figure 11.3 is shown the search for x = I, y = P , LCA(x, y) = K, the
path from x to y is drawn with thick lines, and the excess path is drawn with dashed lines.

11.4.2 Skip Lists

A skip list is a randomized dictionary data structure, which can be considered to consists of
expected O(log n) levels. The lowest level being a single linked list containing the elements
in sorted order, and each succeeding level is a random sample of the elements of the previous
level, where each element is included in the next level with a fixed probability, e.g. 1/2. The

© 2005 by Chapman & Hall/CRC
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pointer representation of a skip is illustrated in Figure 11.4.
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The most prominent properties of skip lists are that they require expected linear space,
consist of expected O(log n) levels, support searches in expected O(log n) time, and support
insertions and deletions at a given position in expected O(1) time [36, 37].

Pugh in [36] elaborates on the various properties and extensions of skip lists, including
pseudo-code for how skip lists support finger searches in expected O(log d) time. To facilitate
backward finger searches, a finger to a node v is stored as an expected O(log n) space finger
data structure that for each level i stores a pointer to the node to the left of v where the
level i pointer either points to v or a node to the right of v. Moving a finger requires this
list of pointers to be updated correspondingly.

A backward finger search is performed by first identifying the lowest node in the fin-
ger data structure that is to the left of the search key y, where the nodes in the finger
data structure are considered in order of increasing levels. Thereafter the search proceeds
downward from the identified node as in a standard skip list search.

Figure 11.4 shows the situation where we have a finger to H, represented by the thick
(solid or dashed) lines, and perform a finger search for the element D to the left of H. Dashed
(thick and thin) lines are the pointers followed during the finger search. The numbering
indicate the other in which the pointers are traversed.

If the level links of a skip list are maintained as double-linked lists, then finger searches
can be performed in expected O(log d) time by traversing the existing links, without having
a separate O(log n) space finger data structure

11.5 Applications

Finger search trees have, e.g., been used in algorithms within computational geometry
[3, 8, 20, 24, 28, 41] and string algorithms [10, 11]. In the rest of this chapter we give examples
of the efficiency that can be obtained by applying finger search trees. These examples
typically allow one to save a factor of O(log n) in the running time of algorithms compared
to using standard balanced search trees supporting O(log n) time searches.

11.5.1 Optimal Merging and Set Operations

Consider the problem of merging two sorted sequences X and Y of length respectively n
and m, where n ≤ m, into one sorted sequence of length n + m. The canonical solution is
to repeatedly insert each x ∈ X in Y . This requires that Y is searchable and that there can
be inserted new elements, i.e. a suitable representation of Y is a balanced search tree. This
immediately implies an O(n log m) time bound for merging. In the following we discuss
how finger search trees allow this bound to be improved to O(n log m

n ).

© 2005 by Chapman & Hall/CRC

FIGURE 11.4: Performing finger searches on skip list.
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Hwang and Lin [27] presented an algorithm for merging two sorted sequence using op-
timal O(n log m

n ) comparisons, but did not discuss how to represent the sets. Brown and
Tarjan [12] described how to achieve the same bound for merging two AVL trees [1]. Brown
and Tarjan subsequently introduced level linked (2,3)-trees and described how to achieve
the same merging bound for level linked (2,3)-trees [13].

Optimal merging of two sets also follows as an application of finger search trees [26].
Assume that the two sequences are represented as finger search trees, and that we repeatedly
insert the n elements from the shorter sequence into the larger sequence using a finger
that moves monotonically from left to right. If the ith insertion advances the finger di

positions, we have that the total work of performing the n finger searches and insertions is
O(

∑n
i=1 log di), where

∑n
i=1 di ≤ m. By convexity of the logarithm the total work becomes

bounded by O(n log m
n ).

Since sets can be represented as sorted sequences, the above merging algorithm gives
immediately raise to optimal, i.e. O

(
log

(
n+m

n

))
= O(n log m

n ) time, algorithms for set
union, intersection, and difference operations [26]. For a survey of data structures for set

11.5.2 Arbitrary Merging Order

A classical O(n log n) time sorting algorithm is binary merge sort. The algorithm can be
viewed as the merging process described by a balanced binary tree: Each leaf corresponds
to an input element and each internal node corresponds to the merging of the two sorted
sequences containing respectively the elements in the left and right subtree of the node.
If the tree is balanced then each element participates in O(log n) merging steps, i.e. the
O(n log n) sorting time follows.

Many divide-and-conquer algorithms proceed as binary merge sort, in the sense that the
work performed by the algorithm can be characterized by a treewise merging process. For
some of these algorithms the tree determining the merges is unfortunately fixed by the input
instance, and the running time using linear merges becomes O(n · h), where h is the height
of the tree. In the following we discuss how finger search trees allow us to achieve O(n log n)
for unbalanced merging orders to.

Consider an arbitrary binary tree T with n leaves, where each leaf stores an element. We
allow T to be arbitrarily unbalanced and that elements are allowed to appear at the leaves
in any arbitrary order. Associate to each node v of T the set Sv of elements stored at the
leaves of the subtree rooted at v. If we for each node v of T compute Sv by merging the

to compute all the sets Sv is O(n log n).
The proof of the total O(n log n) bound is by structural induction where we show that in

a tree of size n, the total merging cost is O(log(n!)) = O(n log n). Recall that two sets of
size n1 and n2 can be merged in O

(
log

(
n1+n2

n1

))
time. By induction we get that the total

merging in a subtree with a root with two children of size respectively n1 and n2 becomes:

log(n1!) + log(n2!) + log
(

n1 + n2

n1

)

= log(n1!) + log(n2!) + log((n1 + n2)!) − log(n1!) − log(n2!)
= log((n1 + n2)!) .

The above approach of arbitrary merging order was applied in [10, 11] to achieve O(n log n)
time algorithms for finding repeats with gaps and quasiperiodicities in strings. In both these

© 2005 by Chapman & Hall/CRC

representations see Chapter 33.

two sets of the children of v using finger search trees, cf. Section 11.5.1, then the total time
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algorithms T is determined by the suffix-tree of the input string, and the Sv sets denote
the set of occurrences (positions) of the substring corresponding to the path label of v.

11.5.3 List Splitting

Hoffmann et al. [25] considered how finger search trees can be used for solving the following
list splitting problem, that e.g. also is applied in [8, 28]. Assume we initially have a sorted
list of n elements that is repeatedly split into two sequences until we end up with n sequences
each containing one element. If the splitting of a list of length k into two lists of length k1

and k2 is performed by performing a simultaneous finger search from each end of the list,
followed by a split, the searching and splitting can be performed in O(log min(k1, k2)) time.
Here we assume that the splitting order is unknown in advance.

By assigning a list of k elements a potential of k − log k ≥ 0, the splitting into two lists
of size k1 and k2 releases the following amount of potential:

(k − log k) − (k1 − log k1) − (k2 − log k2)
= − log k + log min(k1, k2) + log max(k1, k2)
≥ −1 + log min(k1, k2) ,

since max(k1, k2) ≥ k/2. The released potential allows each list splitting to be performed
in amortized O(1) time. The initial list is charged n − log n potential. We conclude that
starting with a list of n elements, followed by a sequence of at most n − 1 splits requires
total O(n) time.

11.5.4 Adaptive Merging and Sorting

The area of adaptive sorting addresses the problem of developing sorting algorithms which
perform o(n log n) comparisons for inputs with a limited amount of disorder for various
definitions of measures of disorder, e.g. the measure Inv counts the number of pairwise

An adaptive sorting algorithm that is optimal with respect to the disorder measure Inv

has running time O(n log Inv

n ). A simple adaptive sorting algorithm optimal with respect to
Inv is the insertion sort algorithm, where we insert the elements of the input sequence from
left to right into a finger search tree. Insertions always start at a finger on the last element
inserted. Details on applying finger search trees in insertion sort can be found in [13, 31, 32].

Another adaptive sorting algorithm based on applying finger search trees is obtained by
replacing the linear merging in binary merge sort by an adaptive merging algorithm [14, 33–
35]. The classical binary merge sort algorithm alway performs Ω(n log n) comparisons, since
in each merging step where two lists each of size k is merged the number of comparisons
performed is between k and 2k − 1.

B1 B2 B3 B4 B5 B6A1 A2 A3 A4 A5 A6

A1 B1 A2 B2 A4A3 B3 B4 A5 B5 B6A6

FIGURE 11.5: Adaptive merging.

© 2005 by Chapman & Hall/CRC

insertions in the input. For a survey of adaptive sorting algorithms see [18].
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The idea of the adaptive merging algorithm is to identify consecutive blocks from the input

This is done by repeatedly performing a finger search for the smallest element of the two
input sequences in the other sequence and deleting the identified block in the other sequence
by a split operation. If the blocks in the output sequence are denoted Z1, . . . , Zk, it follows
from the time bounds of finger search trees that the total time for this adaptive merging
operation becomes O(

∑k
i=1 log |Zi|). From this merging bound it can be argued that merge

sort with adaptive merging is adaptive with respect to the disorder measure Inv (and several
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