DEMO : Purchase from www.A-PDF.com to remove the watermark

14

Trees with Minimum Weighted Path
Length

14.1 Introduction.............. ..., 14-1

14.2 Huffman Trees ..., 14-2
O(nlogn) Time Algorithm ® Linear Time Algorithm
for Presorted Sequence of Items ® Relation between
General Uniquely Decipherable Codes and Prefix-free
Codes * Huffman Codes and Entropy ® Huffman
Algorithm for ¢-ary Trees

14.3 Height Limited Huffman Trees 14-8
Reduction to the Coin Collector Problem ® The
Algorithm for the Coin Collector Problem

14.4 Optimal Binary Search Trees 14-10
Approximately Optimal Binary Search Trees
14.5 Optimal Alphabetic Tree Problem............... 14-13

Computing the Cost of Optimal Alphabetic Tree ®
Construction of Optimal Alphabetic Tree ® Optimal

Wojciech Rytter Alphabetic Trees for Presorted Items
New Jersey Institute of Technology and 14.6 Optimal Lopsided Trees...............cocvvinnn.. 14-19
Warsaw University 14.7 Parallel Algorithms 14-19

14.1 Introduction

The concept of the “weighted path length” is important in data compression and searching.
In case of data compression lengths of paths correspond to lengths of code-words. In case
of searching they correspond to the number of elementary searching steps. By a length of a
path we mean usually its number of edges.

Assume we have n weighted items, where w; is the non-negative weight of the ™ item.
We denote the sequence of weights by S = (w, ...w,). We adopt the convention that the
items have unique names. When convenient to do so, we will assume that those names are
the positions of items in the list, namely integers in [1...n].

We consider a binary tree T, where the items are placed in vertices of the trees (in leaves
only or in every node, depending on the specific problem). We define the minimum weighted
path length (cost) of the tree T as follows:

cost(T) = Z wilevel (1)
i=1

where levelp is the level function of T', i.e., levelr (i) is the level (or depth) of i in T, defined
to be the length of the path in 7' from the root to 7.

14-1

© 2005 by Chapman & Hall/CRC

http://www.a-pdf.com/?product-split-demo

14-2 Handbook of Data Structures and Applications

In some special cases (lopsided trees) the edges can have different lengths and the path
length in this case is the sum of individual lengths of edges on the path.

In this chapter we concentrate on several interesting algorithms in the area:

e Huffman algorithm constructing optimal prefix-free codes in time O(nlogn), in
this case the items are placed in leaves of the tree, the original order of items can
be different from their order as leaves;

e A version of Huffman algorithm which works in O(n) time if the weights of items
are sorted

e Larmore-Hirschberg algorithm for optimal height-limited Huffman trees working
in time O(n x L), where L is the upper bound on the height, it is an interesting
algorithm transforming the problem to so called “coin-collector”, see [21].

e Construction of optimal binary search trees (OBST) in O(n?) time using certain
property of monotonicity of “splitting points” of subtrees. In case of OBST every
node (also internal) contains exactly one item. (Binary search trees are defined
in Chapter 3.)

o Construction of optimal alphabetic trees (OAT) in O(nlogn) time: the Garsia-
Wachs algorithm [11]. It is a version of an earlier algorithm of Hu-Tucker [12,
18] for this problem. The correctness of this algorithm is nontrivial and this
algorithm (as well as Hu-Tucker) and these are the most interesting algorithms
in the area.

e Construction of optimal lopsided trees, these are the trees similar to Huffman
trees except that the edges can have some lengths specified.

e Short discussion of parallel algorithms

Many of these algorithms look “mysterious”, in particular the Garsia-Wachs algorithm for
optimal alphabetic trees. This is the version of the Hu-Tucker algorithm. Both algorithms
are rather simple to understand in how they work and their complexity, but correctness is
a complicated issue.

Similarly one can observe a mysterious behavior of the Larmore-Hirschberg algorithm for
height-limited Huffman trees. Its “mysterious” behavior is due to the strange reduction to
the seemingly unrelated problem of the coin collector.

The algorithms relating the cost of binary trees to shortest paths in certain graphs are
also not intuitive, for example the algorithm for lopsided trees, see [6], and parallel algo-
rithm for alphabetic trees, see [23]. The efficiency of these algorithms relies on the Monge
property of related matrices. Both sequential and parallel algorithms for Monge matrices
are complicated and interesting.

The area of weighted paths in trees is especially interesting due to its applications (com-
pression, searching) as well as to their relation to many other interesting problems in com-
binatorial algorithmics.

14.2 Huffman Trees

Assume we have a text x of length IV consisting of n different letters with repetitions.
The alphabet is a finite set . Usually we identify the i-th letter with its number i. The
letter ¢ appears w; times in . We need to encode each letter in binary, as h(a), where h
is a morphism of alphabet ¥ into binary words, in a way to minimize the total length of
encoding and guarantee that it is uniquely decipherable, this means that the extension of

© 2005 by Chapman & Hall/CRC

Trees with Minimum Weighted Path Length 14-3

FIGURE 14.1: A Huffman tree T for the items a,b,c,d,r and the weight sequence S =
(5,2,1,1,2). The numbers in internal nodes are sums of weights of leaves in corresponding
subtrees. Observe that weighted path length of the tree is the total sum of values in internal
nodes. Hence HuffmanCost(S) = 2+44+6+11 = 23.

the morphism A to all words over ¥ is one-to-one. The words h(a), where a € 3, are called
codewords or codes.

The special case of uniquely decipherable codes are prefiz-free codes: none of the code is
a prefix of another one. The prefix-free code can be represented as a binary tree, with left
edges corresponding to zeros, and right edge corresponding to ones.

Let S = {wy,w2,...,w,} be the sequence of weights of items. Denote by HuffmanCost(.S)
the total cost of minimal encoding (weighted sum of lengths of code-words) and by HT(.S)
the tree representing an optimal encoding. Observe that several different optimal trees are
possible. The basic algorithm is a greedy algorithm designed by Huffman, the corresponding
trees and codes are called Huffman trees and Huffman codes.

Example Let text = abracadabra. The number of occurrences of letters are
Wy = 0, wp = 2,w, = 1, wg = 1,w, = 2.
We treat letters as items, and the sequence of weights is:
S = (5,2,1,1,2)

An optimal tree of a prefix code is shown in Figure 14.1. We have, according to the definition
of weighted path length:

HuffmanCost(S) = 5x1+2%2+1+44+1x44+2x3 = 23
The corresponding prefix code is:
h(a) = 0,h(b) = 10, h(c) = 1100, h(d) = 1101, h(r) = 111.

We can encode the original text abracadabra using the codes given by paths in the prefix
tree. The coded text is then 01011101100011010101110, that is a word of length 23.

If for example the initial code words of letters have length 5, we get the compression ratio
55/23 =~ 2.4.

© 2005 by Chapman & Hall/CRC

14-4 Handbook of Data Structures and Applications

14.2.1 O(nlogn) Time Algorithm

The basic algorithm is the greedy algorithm given by Huffman. In this algorithm we can
assume that two items of smallest weight are at the bottom of the tree and they are sons
of a same node. The greedy approach in this case is to minimize the cost locally.

Two smallest weight items are combined into a single package with weight equal to the
sum of weights of these small items. Then we proceed recursively. The following observation
is used.

Observation Assume that the numbers in internal nodes are sums of weights of leaves in
corresponding subtrees. Then the total weighted path length of the tree is the total sum of
values in internal nodes.

Due to the observation we have for |S| > 1:
HuffmanCost(S) = HuffmanCost(S — {u,w}) +u + w,

where u, w are two minimal elements of S. This implies the following algorithm, in which
we assume that initially S is stored in a min-priority queue. The algorithm is presented
below as a recursive function HuffrmanCost(S) but it can be easily written without recursion.
The algorithm computes only the total cost.

THEOREM 14.1 Huffman algorithm constructs optimal tree in O(nlogn) time

Proof In an optimal tree we can exchange two items which are sons of a same father at
a bottom level with two smallest weight items. This will not increase the cost of the tree.
Hence there is an optimal tree with two smallest weight items being sons of a same node.
This implies correctness of the algorithm.

The complexity is O(nlogn) since each operation in the priority queue takes O(logn)
time and there are O(n) operations of Extract-Min.

function HuffmanCost(S)
{ Huffman algorithm: recursive version}
{ computes only the cost of minimum weighted tree }

1. if S contains only one element u then return 0;
u = Extract Min(S); w = ExtractMin(S);
insert(u+w, S);

return HuffmanCost(S) +u+w

Ll

The algorithm in fact computes only the cost of Huffman tree, but the tree can be
created on-line in the algorithm. Each time we combine two items we create their father
and create links son-father. In the course of the algorithm we keep a forest (collection of
trees). Eventually this becomes a single Huffman tree at the end.

14.2.2 Linear Time Algorithm for Presorted Sequence of Items

There is possible an algorithm using “simple” queues with constant time operations of
inserting and deleting elements from the queue if the items are presorted.

© 2005 by Chapman & Hall/CRC

Trees with Minimum Weighted Path Length 14-5

THEOREM 14.2 If the weights are already sorted then the Huffman tree can be con-
structed in linear time.

Proof If we have sorted queues of remaining original items and remaining newly created
items (packages) then it is easy to see that two smallest items can be chosen from among 4
items, two first elements of each queue. This proves correctness.

Linear time follows from constant time costs of single queue operations.

Linear-Time Algorithm

{ linear time computation of the cost for presorted items }

1. initialize empty queues Q, S;
total_cost = 0;
2. place original n weights into nondecreasing order into S;
the smallest elements at the front of S;
3. while |Q|+ |S| > 2 do {
let u, w be the smallest elements chosen from the
first two elements of Q and of S;
remove u, w from Q U S; insert(u + w, Q);
total_cost = total_cost + (u+ w);}
4. return total_cost

14.2.3 Relation between General Uniquely Decipherable Codes and
Prefix-free Codes

It would seem that, for some weight sequences, in the class of uniquely decipherable codes
there are possible codes which beat every Huffman (prefix-free) code. However it happens
that prefix-free codes are optimal within the whole class of uniquely decipherable codes. It
follows immediately from the next three lemmas.

LEMMA 14.1 For each full (each internal node having exactly two sons) binary tree T'
with leaves 1...n we have:

n

Z 27levelT(i) -1

i=1
Proof Simple induction on n.

LEMMA 14.2 For each uniquely decipherable code S with word lengths ¢1,/¢5,...,¢; on
the alphabet {0,1} we have :

k
22—&‘ <1
=1

© 2005 by Chapman & Hall/CRC

14-6 Handbook of Data Structures and Applications

Proof For a set W of words on the alphabet {0,1} define:
cw) = Yy 27l

zeW

We have to show that C(S) < 1. Let us first observe the following simple fact.

Observation.
If S is uniquely decipherable then C'(S)* = C(S™) for all n > 1.

The proof that C'(S) < 1 is now by contradiction, assume C(S) > 1. Let ¢ be the length of
the longest word in S. Observe that
C(x*)=1foreach k, C(S") < C{ze¥* : 1<|z[<en}) = en
Denote g = C(S). Then we have:
CO"=q"<cen
For ¢ > 1 this inequality is not true for all n, since
lim ¢"/(ecn) = +ooif g > 1.

Therefore it should be ¢ < 1 and C(S) < 1. This completes the proof.

LEMMA 14.3 [Kraft’s inequality] There is a prefix code with word lengths ¢1,¢s, ..., ¢
on the alphabet {0,1} iff

k
Y o2hi<a (14.1)
=1

Proof It is enough to show how to construct such a code if the inequality holds. Assume
the lengths are sorted in the increasing order. Assume we have a (potentially) infinite full
binary tree. We construct the next codeword by going top-down, starting from the root. We
assign to the i-th codeword, for ¢ = 1,2,3, ..., k, the lexicographically first path of length
£;, such that the bottom node of this path has not been visited before. It is illustrated in
Figure 14.2. If the path does not exist then this means that in this moment we covered with
paths a full binary tree, and the actual sum equals 1. But some other lengths remained, so

it would be : N
Y o2tisa
i=1

a contradiction. This proves that the construction of a prefix code works, so the corre-
sponding prefix-free code covering all lengths exists. This completes the proof.

The lemmas imply directly the following theorem.

THEOREM 14.3 A uniquely decipherable code with prescribed word lengths exists iff a
prefix code with the same word lengths exists.

We remark that the problem of testing unique decipherability of a set of codewords is
complete in nondeterministic logarithmic space, see [47].

© 2005 by Chapman & Hall/CRC

Trees with Minimum Weighted Path Length 14-7

FIGURE 14.2: Graphical illustration of constructing prefix-free code with prescribed lengths
sequence satisfying Kraft inequality.

14.2.4 Huffman Codes and Entropy

The performance of Huffman codes is related to a measure of information of the source text,
called the entropy (denoted by &) of the alphabet. Let w, be n,/N, where n, is the number
of occurrences of a in a given text of length N. In this case the sequence S of weights w,
is normalized > ; w; = 1.

The quantity w, can be now viewed as the probability that letter a occurs at a given
position in the text. This probability is assumed to be independent of the position. Then,
the entropy of the alphabet according to w,’s is defined as

E(A) = — Zwalogwa.

acA

The entropy is expressed in bits (log is a base-two logarithm). It is a lower bound of the
average length of the code words h(a),

m(A) = Z wgq.|h(a)l.

a€A

Moreover, Huffman codes give the best possible approximation of the entropy (among meth-
ods based on coding of the alphabet). This is summarized in the following theorem whose
proof relies on the inequalities from Lemma 14.2.

THEOREM 14.4 Assume the weight sequence A of weights is normalized. The total cost
m(A) of any uniquely decipherable code for A is at least E(A), and we have
E(A) < HuffmanCost(A) < E(A) + 1.

14.2.5 Huffman Algorithm for t-ary Trees

An important generalization of Huffman algorithm is to t-ary trees. Huffman algorithm
generalizes to the construction of prefix codes on alphabet of size ¢ > 2. The trie of the
code is then an almost full t-ary tree.

We say that t-ary tree is almost full if all internal nodes have exactly ¢ sons, except
possibly one node, which has less sons, in these case all of them should be leaves (let us call
this one node a defect node).

We perform similar algorithm to Huffman method for binary trees, except that each time
we select ¢ items (original or combined) of smallest weight.

© 2005 by Chapman & Hall/CRC

14-8 Handbook of Data Structures and Applications

There is one technical difficulty. Possibly we start by selecting a smaller number of items
in the first step. If we know ¢ and the number of items then it is easy to calculate number
q of sons of the defect node, for example if ¢ = 3 and n = 8 then the defect node has two
sons. It is easy to compute the number ¢ of sons of the defect node due to the following
simple fact.

LEMMA 14.4 If T is a full t-ary tree with m leaves then m modulo (t —1) = 1.

We start the algorithm by combining g smallest items. Later each time we combine
exactly t values. To simplify the algorithm we can add the smallest possible number of
dummy items of weigh zero to make the tree full t-ary tree.

14.3 Height Limited Huffman Trees

In this section only, for technical reason, we assume that the length of the path is the
number of its vertices. For a sequence S of weights the total cost is changed by adding the
sum of weights in S.

Assume we have the same problem as in the case of Huffman trees with additional restric-
tion that the height of the tree is limited by a given parameter L. A beautiful algorithm
for this problem has been given by Larmore and Hirschberg, see [16].

14.3.1 Reduction to the Coin Collector Problem

The main component of the algorithm is the reduction to the following problem in which
the crucial property play powers of two. We call a real number dyadic iff it has a finite
binary representation.

Coin Collector problem:

Input: A set I of m items and dyadic number X, each element of I has a width
and a weight, where each width is a (possibly negative) power of two, and
each weight is a positive real number.

Output: CoinColl(I, X) - the minimum total weight of a subset S C I whose
widths sum to X.

The following trivial lemma plays important role in the reduction of height limited tree
problem to the Coin Collector problem.

LEMMA 14.5 Assume T is a full binary tree with n leaves, then

Z 27161)61T(1}) = n+1
veT

Assume we have Huffman coding problem with n items with the sequence of weights weights
W = wi,ws,...,w,. We define an instance of the Coin Collector problem as follows:

o Iyy = {(i,1) - i€[l...n], le1,...L],

o width(i,l) = 27!, weight(i,l) = w; for each 4,1

e X, = n+1.

© 2005 by Chapman & Hall/CRC

Trees with Minimum Weighted Path Length 14-9

(3,2,1.4)

level 0 (3,0), (2,0), (1,0), (4,0)

3,1, (2,1), (1,1), (4,1)

(3,2), (2,2),(1,2)

(3,2),(2,2), (1,2)

FIGURE 14.3: A Huffman tree T for the items 1,2,3,4 of height limited by 4 and the
corresponding solution to the Coin Collector problem. Each node of the tree can be treated
as a package consisting of leaves in the corresponding subtree. Assume weight(i) = i. Then
in the corresponding Coin Collector problem we have weight(i, h) = i, width(i,h) = 27"

The intuition behind this strange construction is to view nodes as packages consisting
of of original items (elements in the leaves). The internal node v which is a package
consisting of (leaves in its subtree) items iy,42,...,%4; can be treated as a set of coins
(i1,h), (G2, h), ... (i, h), where h is the level of v, and weight(i;, h) = weight(i;). The total
weight of the set of coins is the cost of the Huffman tree.

Example Figure 14.3 shows optimal Huffman tree for S = (1,2,3,4) with height limited
by 4, and the optimal solution to the corresponding Coin Collector problem. The sum of
widths of the coins is 4+1, and the total weight is minimal. It is the same as the cost of
the Huffman tree on the left, assuming that leaves are also contributing their weights (we
scale cost by the sum of weights of .S).

Hirschberg and Larmore, see [16], have shown the following fact.

LEMMA 14.6 The solution CoinColl(Iy, Xw) to the Coin Collector Problem is the cost
of the optimal L-height restricted Huffman tree for the sequence W of weights.

14.3.2 The Algorithm for the Coin Collector Problem

The height limited Huffman trees problem is thus reduced to the Coin Collector Problem.
The crucial point in the solution of the latter problem is the fact that weights are powers
of two.

Denote MinWidth(X) to be the smallest power of two in binary representation of number
X. For example MinWidth(12) = 4 since 12 = 8 + 4. Denote by Minltem(I) the item
with the smallest width in I.

LEMMA 14.7 If the items are sorted with respect to the weight then the Coin Collector
problem can be solved in linear time (with respect to the total number |I| of coins given in
the input).

© 2005 by Chapman & Hall/CRC

14-10 Handbook of Data Structures and Applications

Proof The recursive algorithm for the Coin Collector problem is presented below as
a recursive function CoinColl(I,X). There are several cases depending on the relation
between the smallest width of the item and minimum power of two which constitutes the
binary representation of X. In the course of the algorithm the set of weights shrinks as well
as the size of X. The linear time implementation of the algorithm is given in [21].

function CC(I, X); {Coin Collector Problem}
{compute nnimal weight of a subset of I of total width X
x := Minltem(X); r := width(z);
if r > MinWidth(X) then
no solution exists else
if r = MinWidth(X) then
return CC(I —{z}, X —r) + weight(z) else
if r < MinWidth(X) and there is only one item of width r then
return CC(I — {z}, X) else
let z, 2’ be two items of smallest weight and width r,
create new item gy such that
width(y) = 2r, weight(y) = weight(z) + weight(x');
return CC(I — {z,2'} U {y}, X)

The last two lemmas imply the following fact.

THEOREM 14.5 The problem of the Huffman tree for n items with height limited by L
can be solved in O(n - L) time.

Using complicated approach of the Least Weight Concave Subsequence the complexity has
been reduced to ny/Llogn + nlogn in [1]. Another small improvement is by Schieber
[49]. An efficient approximation algorithm is given in [40-42]. The dynamic algorithm for
Huffman trees is given in [50].

14.4 Optimal Binary Search Trees

Assume we have a sequence of 2n + 1 weights (nonnegative reals)
OéOvﬂl; O‘lvﬂ?a sy On—1, 5717 Qnp.

Let Tree(ag, 81,1, B2, -, an—1, Bn, @n) be the set of all full binary weighted trees with n
internal nodes, where the i-th internal node (in the in-order) has the weight §;, and the i-th
external node (the leaf, in the left-to-right order) has the weight «;. The in-order traversal
results if we visit all nodes in a recursive way, first the left subtree, then the root, and
afterwards the right subtree.

If T is a binary search tree then define the cost of T' as follows:

cost(T) = Z levelp(v) - weight(v).
veT

Let OPT (a, b1, - -« y Qn—1, Bn,) be the set of trees Tree(a, f1, - . -, &n—1, Bn, @) whose
cost is minimal.

© 2005 by Chapman & Hall/CRC

Trees with Minimum Weighted Path Length 14-11

5
2 3 3
| |

FIGURE 14.4: A binary search tree for the sequences: § = (01,02,...,06) =
(1,2,3,4,5,6), a = (ap,a1,...06) = (3,2,3,4,1,1,3). We have cut(0,6) = 3.

We use also terminology from [35]. Let Ki,... K, be a sequence of n weighted items
(keys), which are to be placed in a binary search tree. We are given 2n + 1 weights (prob-
ablhtleS) q0,P1,41,P2,42,P35 -+ - 34n—1,Pn,qn where

e p; is the probability that K; is the search argument;
e ¢; is the probability that the search argument lies between K; and K; .

The OBST problem is to construct an optimal binary search tree, the keys K;’s are to be
stored in internal nodes of this binary search tree and in its external nodes special items are
to be stored. The i-th special item K corresponds to all keys which are strictly between K;
and K;y1. The binary search tree is a full binary tree whose nodes are labeled by the keys.
Using the abstract terminology introduced above the OBST problem consists of finding a
tree T € OPT(qo,p1,91,P2, -+, qn—1, Pn, qn), see an example tree in Figure 14.4.

Denote by obst (i, j) the set OPT(g;, Pit1,Qi+1; - ---9j—1,Dj,4;)- Let cost(i, j) be the cost
of a tree in obst(i, j), for i < j, and cost (s, 1) = ¢;. The sequence ¢;, pi+1,4i+1; - - -,q5—1,Dj, §j
is here the subsequence of qg, p1,q1,P2,- -, ¢n—1,Pn, qn, consisting of some number of con-
secutive elements which starts with ¢; and ends with ¢;. Let

w(i,7) = ¢ +piy1 + Giv1 + ...+ qi—1 +pj +qj.

The dynamic programming approach to the computation of the OBST problem relies on the
fact that the subtrees of an optimal tree are also optimal. If a tree T' € obst (i, j) contains
in the root an item K} then its left subtree is in obst(i,k — 1) and its right subtree is in
obst(k, 7). Moreover, when we join these two subtrees then the contribution of each node
increases by one (as one level is added), so the increase is w(i, j). Hence the costs obey the
following dynamic programming recurrences for ¢ < j:

cost(i,j) = min{cost(i,k — 1) + cost(k,j) + w(i,j) : i <k <j}.

Denote the smallest value of k& which minimizes the above equation by cut(i,j). This is
the first point giving an optimal decomposition of obst(i, j) into two smaller (son) subtrees.
Optimal binary search trees have the following crucial property (proved in [34], see the
figure for graphical illustration)

monotonicity property: i <i <j <j = cut(i,j) < cut(i’,j).

© 2005 by Chapman & Hall/CRC

14-12 Handbook of Data Structures and Applications

CUT(,j) CUTG)

FIGURE 14.5: Graphical illustration of the monotonicity property of cuts.

The property of monotonicity, the cuts and the quadratic algorithm for the OBST were
first given by Knuth. The general dynamic programming recurrences were treated by Yao
[52], in the context of reducing cubic time to quadratic.

THEOREM 14.6 Optimal binary search trees can be computed in O(n?) time.

Proof The values of cost(i, j) are computed by tabulating them in an array. Such tabu-
lation of costs of smaller subproblems is the basis of the dynamic programming technique.
We use the same name cost for this array. It can be computed in O(n?) time, by processing
diagonal after diagonal, starting with the central diagonal.

In case of optimal binary search trees this can be reduced to O(n?) using additional
tabulated values of the cuts in table cut. The k-th diagonal consists of entries 7, j such
that j — ¢ = k. If we have computed cuts for k-th diagonal then for (4, 7) on the (k + 1)-th
diagonal we know that

cut(i,j —1) < cut(i,j) < cut(i+1,)

Hence the total work on the (k + 1)-th diagonal is proportional to the sum of telescoping
series:

cut(1,k+1) — cut(0, k) + cut(2,k +2) — cut(l,k+ 1)+
cut(3,k+3) —cut(2,k+2)+...cut(n — k, k) —cut(in — k — 1,k — 1),

which is O(n). Summing over all diagonals gives quadratic total time to compute the tables
of cuts and costs. Once the table cost(i, j) is computed then the construction of an optimal
tree can be done in quadratic time by tracing back the values of cuts.

14.4.1 Approximately Optimal Binary Search Trees

We can attempt to reduce time complexity at the cost of slightly increased cost of the
constructed tree. A common-sense approach would be to insert the keys in the order of
decreasing frequencies. However this method occasionally can give quite bad trees.
Another approach would be to choose the root so that the total weights of items in the
left and right trees are as close as possible. However it is not so good in pessimistic sense.
The combination of this methods can give quite satisfactory solutions and the resulting
algorithm can be linear time, see [44]. Average subquadratic time has been given in [29].

© 2005 by Chapman & Hall/CRC

Trees with Minimum Weighted Path Length 14-13

14.5 Optimal Alphabetic Tree Problem

The alphabetic tree problem looks very similar to the Huffman problem, except that the
leaves of the alphabetic tree (read left-to-right) should be in the same order as in the
original input sequence. Similarly as in Huffman coding the binary tree must be full, i.e.,
each internal node must have exactly two sons.

The main difficulty is that we cannot localize easily two items which are to be combined.

Assume we have a sequence of n weighted items, where w; is the non-negative weight of
the i*" item. We write @ = w, ... w,. The sequence will be changing in the course of the
algorithm.

An alphabetic tree over « is an ordered binary tree T with n leaves, where the i*" leaf
(in left-to-right order) corresponds to the i item of The optimal alphabetic tree problem
(OAT problem) is to find an alphabetic tree of minimum cost.

The Garsia-Wachs algorithm solves the alphabetic tree problem, it is a version of an
earlier algorithm by Hu and Tucker, see [18]. The strangest part of the algorithm is that it
permutes «, though the final tree should have the order of leaves the same as the order of
items in the original sequence. We adopt the convention that the items of o have unique
names, and that these names are preserved when items are moved. When convenient to do
so, we will assume that those names are the positions of items in the list, namely integers
in[1...n].

14.5.1 Computing the Cost of Optimal Alphabetic Tree

First we show how to compute only the cost of the whole tree, however this computation
does not give automatically an optimal alphabetic tree, since we will be permuting the
sequence of items. Each time we combine two adjacent items in the current permutation,
however these items are not necessarily adjacent in the original sequence, so in any legal
alphabetic tree they cannot be sons of a same father.

The alphabetic tree is constructed by reducing the initial sequence of items to a shorter
sequence in a manner similar to that of the Huffman algorithm, with one important differ-
ence. In the Huffman algorithm, the minimum pair of items are combined, because it can
be shown that they are siblings in the optimal tree. If we could identify two adjacent items
that are siblings in the optimal alphabetic tree, we could combine them and then proceed
recursively. Unfortunately, there is no known way to identify such a pair. Even a minimal
pair may not be siblings. Consider the weight sequence (8 778). The second and the third
items are not siblings in any optimal alphabetic tree.

Instead, the HT and GW algorithms, as well as the algorithms of [20, 22, 23, 46], operate
by identifying a pair of items that have the same level in the optimal tree. These items are
then combined into a single “package,” reducing the number of items by one. The details
on how this process proceeds differ in the different algorithms. Define, for 1 < i < n, the
ith two-sum:

TwoSum(i) = w; + w;y1

A pair of adjacent items (¢,7 + 1) is a locally minimal pair (or Imp for short) if

TwoSum(i — 1)
TwoSum/(i)

TwoSum () if i>1

>
< TwoSum(i+1) if i<n-—2

A locally minimal pair which is currently being processed is called the active pair.

© 2005 by Chapman & Hall/CRC

14-14 Handbook of Data Structures and Applications

The Operator Move. If w is any item in a list 7w of weighted items, define RightPos(w)
to be the predecessor of the nearest right larger or equal neighbor of w. If w has no right
larger or equal neighbor, define RightPos(w) to be |r| + 1.

Let Move(w,w) be the operator that changes 7 by moving w w is inserted between
positions RightPos(w) — 1 and RightPos(w). For example

Move(7,(2,5,7,2,4,9,3,4) = (2,5,2,4,7,9,3,4)

function GW(r); {7 is a sequence of names of items}
{restricted version of the Garsia-Wachs algorithm}
{ computing only the cost of optimal alphabetic tree }
if 7 = (v) (7 counsists of a single item)
then return 0
else
find any locally minimal pair (u,w) of
create a new item x whose weight is weight(u) + weight(w);
replace the pair u,v by the single item z;
{ the items u,v are removed }
Move(v,);
return GW(m) + weight(v);

Correctness of the algorithm is a complicated issue. There are two simplified proofs, see
[19,30] and we refer to these papers for detailed proof. In [19] only the rightmost minimal
pair can be processed each time, while [30] gives correctness of general algorithm when
any minimal pair is processed, this is important in parallel computation, when we process
simultaneously many such pairs. The proof in [30] shows that correctness is due to well-
shaped bottom segments of optimal alphabetic trees, this is expressed as a structural theorem
in [30] which gives more insight into the global structure of optimal alphabetic trees.

For j > 74 1 denote by m; ; the sequence 7 in which elements 7,7 + 1 are moved just
before left of j.

THEOREM 14.7 [Correctness of the GW algorithm]

Let (i,i 4 1) be a locally minimal pair and RightPos(i,i + 1) = j, and let T’ be a tree over
the sequence m; j, optimal among all trees over m; ; in which i, i +1 are siblings. Then there
is an optimal alphabetic tree T over the original sequence m = (1,...n) such that T = T".

Correctness can be also expressed as equivalence between some classes of trees.
Two binary trees T and T5 are said to be level equivalent (we write T =2 Tb) if 77, and
T have the same set of leaves (possibly in a different order) and levely, = levelr,.

Denote by OPT(¢) the set of all alphabetic trees over the leaf-sequence (1, ...n) which are
optimal among trees in which 7 and i 4+ 1 are at the same level. Assume the pair (i,7+1) is
locally minimal. Let OPT),,), (i) be the set of all alphabetic trees over the leaf-sequence
m;,; which are optimal among all trees in which leaves i and i + 1 are at the same level,
where j = RightPos(i,i+ 1).

Two sets of trees OPT and OPT’ are said to be level equivalent, written OPT = OPT,
if, for each tree T € OPT, there is a tree 77 € OPT’ such that 7’ = T, and vice versa.

© 2005 by Chapman & Hall/CRC

Trees with Minimum Weighted Path Length 14-15

THEOREM 14.8
Let (1,14 1) be a locally minimal pair. Then
(1) OPT(i) = OPT,, yeq (i) -
(2) OPT(i) contains an optimal alphabetic tree T .
(3) OPT,, peqi) contains a tree T" with i, i+ 1 as siblings.

14.5.2 Construction of Optimal Alphabetic Tree

The full Garsia-Wachs algorithm first computes the level tree. This tree can be easily
constructed in the function GW (7) when computing the cost of alphabetic tree. Each time
we sum weights of two items (original or newly created) then we create new item which is
their father with the weight being the sum of weights of sons.

Once we have a level tree, the optimal alphabetic tree can be constructed easily in linear
time. Figure 14.6, Figure 14.7, and Figure 14.8 show the process of construction the level
tree and construction an optimal alphabetic tree knowing the levels of original items.

LEMMA 14.8 Assume we know level of each leaf in an optimal alphabetic tree. Then
the tree can be constructed in linear time.

Proof The levels give the “shape” of the tree, see Figure 14.8.

Assume ly,19,13,...,1, is the sequence of levels. We scan this sequence from left-to-right
until we find the first two levels l;, ;41 which are the same. Then we know that the leaves i
and 7+ 1 are sons of a same father, hence we link these leaves to a newly created father and
we remove these leaves, in the level sequence the pair [;,1; 11 is replaced by a single level
l; — 1. Next we check if [;_; = [; — 1, if not we search to the right. We keep the scanned
and newly created levels on the stack. The total time is linear.

There are possible many different optimal alphabetic trees for the same sequence, Fig-
ure 14.9 shows an alternative optimal alphabetic tree for the same example sequence.

THEOREM 14.9 Optimal alphabetic tree can be constructed in O(nlogn) time.

Proof We keep the array of levels of items. The array level is global of size (2n — 1).
Its indices are the names of the nodes, i.e., the original n items and the (n — 1) nodes
(“packages”) created during execution of the algorithm. The algorithm works in quadratic
time, if implemented in a naive way. Using priority queues, it works in O(nlogn) time.
Correctness follows directly from Theorem 14.7.

14.5.3 Optimal Alphabetic Trees for Presorted Items

We have seen that Huffman trees can be constructed in linear time if the weights are
presorted. Larmore and Przytycka, see [22] have shown that slightly weaker similar result
holds for alphabetic trees as well:

assume that weights of items are sortable in linear time, then the alphabetic tree problem
can be solved in O(nloglogn) time.

Open problem Is it possible to construct alphabetic trees in linear time in the case when
the weights are sortable in linear time?

© 2005 by Chapman & Hall/CRC

14-16

80

80

80

80

80

Handbook of Data Structures and Applications

/_\
12 10 11 13 3 4 5 9 8 7 25
(@) (@) (@) (@) @] (@) @] (@] (@) (@)
12 13 3/\4 5 9 8 7 21 25
(@) (@) (@) (@] (@) @] (@) (@) 1N (@)
RS
12 13 3 7 9 8 7 21 25
(@) (@) (@) (@) o (@) °
Ja% 7\
1213 9 g 12 21 95
6 0 o o o 5
5 7 lw
32\4
N
12 13 9 o

25

80 12 13 15 71

21
A

21 25
7

TN

80 15 25

21
0 21 25 2
8 x 12 1&) 12?\13

9
5 7
3?\4
o
25

21 25

FIGURE 14.6: The first 7 phases of Garsia-Wachs algorithm.

© 2005 by Chapman & Hall/CRC

Trees with Minimum Weighted Path Length

e
2
wn
[09)
(@)}
[\®]
p—
o
[\]
i
[\S]
P
>i
(@)Y
[\e]
N

o 46 61
80 /\
21 25 36

107

o 46 61
80 /\
21 25 36

@) & 61
21 25 36

14-17

FIGURE 14.7: The last phases of Garsia-Wachs algorithm. The final tree is the level tree
(but not alphabetic tree). The total cost (sum of values in internal nodes equal to 538) and
the levels of original items are the same as in optimal alphabetic tree. The level sequence

for the original sequence (80, 12, 10, 11, 13, 3, 4, 5, 9, 8, 7, 25) is:

Ez(1’4’4’4’4’7’7’6’5’5’37)

© 2005 by Chapman & Hall/CRC

14-18 Handbook of Data Structures and Applications

A W

10 12 11

9}

w
~

FIGURE 14.8: The shape of the optimal tree given by the level sequence and the final
optimal alphabetic tree (cost=538) corresponding to this shape and to the weight sequence

(80, 12, 10, 11, 13, 3, 4, 5, 9, 8, 7, 25).

0 T~
/N

0 f 25
\ 13 \ 9 !\
10 11 3 A

FIGURE 14.9: An alternative optimal alphabetic tree (cost = 538) for the same weight

sequence.

© 2005 by Chapman & Hall/CRC

Trees with Minimum Weighted Path Length 14-19

14.6 Optimal Lopsided Trees

The problem of finding optimal prefix-free codes for unequal letter costs consists of finding
a minimal cost prefix-free code in which the encoding alphabet consists of unequal cost
(length) letters, of lengths o and 3, o < 3. We restrict ourselves here only to binary trees.
The code is represented by a lopsided tree, in the same way as a Huffman tree represents the
solution of the Huffman coding problem. Despite the similarity, the case of unequal letter
costs is much harder then the classical Huffman problem; no polynomial time algorithm is
known for general letter costs, despite a rich literature on the problem, e.g., [4,15]. However
there are known polynomial time algorithms when « and 8 are integer constants [15].

The problem of finding the minimum cost tree in this case was first studied by Karp
[27] in 1961 who solved the problem by reduction to integer linear programming, yielding
an algorithm exponential in both n and (. Since that time there has been much work on
various aspects of the problem such as; bounding the cost of the optimal tree, Altenkamp
and Mehlhorn [2], Kapoor and Reingold [26] and Savari [8]; the restriction to the special
case when all of the weights are equal, Cot [10], Perl Gary and Even [45], and Choi and
Golin [9]; and approximating the optimal solution, Gilbert [13]. Despite all of these efforts it
is still, surprisingly, not even known whether the basic problem is polynomial-time solvable
or in N P-complete.

Golin and Rote [15] describe an O(n®*2)-time dynamic programming algorithm that
constructs the tree in a top-down fashion.

This has been improved using a different approach (monotone-matrix concepts, e.g., the
Monge property and the SMAWK algorithm [7].

THEOREM 14.10 [6]
Optimal lopsided trees can be constructed in O(n®) time.

This is the the most efficient known algorithm for the case of small 3; in practice the
letter costs are typically small (e.g., Morse codes).

Recently a scheme of an efficient approximating algorithm has been given.

THEOREM 14.11 [24]
There is a polynomial time approximation scheme for optimal lopsided trees.

14.7 Parallel Algorithms

As a model of parallel computations we choose the Parallel Random Access Machines
(PRAM), see [14]. From the point of view of parallel complexity two parameters are of
interest: parallel time (usually we require polylogarithmic time) and total work (time mul-
tiplied by the number of processors).

The sequential greedy algorithm for Huffman coding is quite simple, but unfortunately
it appears to be inherently sequential. Its parallel counterpart is much more complicated,
and requires a new approach. The global structure of Huffman trees must be explored in
depth.

A full binary tree T is said to be left-justified if it satisfies the following properties:

© 2005 by Chapman & Hall/CRC

14-20 Handbook of Data Structures and Applications

1. the depths of the leaves are in non-increasing order from left to right,

2. let u be a left brother of v, and assume that the height of the subtree rooted at
v is at least [. Then the tree rooted at u is full at level [, which means that u has
2! descendants at distance [.

Basic property of left-justified trees
Let T be a left-justified binary tree. Then, T' consists of one leftmost branch and the
subtrees hanging from this branch have logarithmic height.

LEMMA 14.9 Assume that the weights wy, ws, ..., w, are pairwise distinct and in
increasing order. Then, there is Huffman tree for (wq,ws, ..., wy) that is left-justified.

The left-justified trees are used together with efficient algorithm for the CLWS problem
(the Concave Least Weight Subsequence problem, to be defined below) to show the following
fact.

THEOREM 14.12 [3]
The parallel Huffman coding problem can be solved in polylogarithmic time with quadratic
work.

Hirschberg and Larmore [16] define the Least Weight Subsequence (LWS) problem as
follows: Given an integer n, and a real-valued weight function w(i,j) defined for integers
0 < i< j< n,find a sequence of integers @ = (0 = ap < a1 < ... < ap—1 < aj = n) such
that w(@) = Zi‘:ol w(o, aiy1) is minimized. Thus, the LWS problem reduces trivially to
the minimum path problem on a weighted directed acyclic graph. The Single Source LWS
problem is to find such a minimal sequence 0 = ap < a1 < ... < ap_1 < ap = m for all
m < n. The weight function is said to be concave if for all 0 < iy < iy < jg < j1 < n,

w(io, jo) +w(i1, j1) < w(io, j1) + w(it, jo)- (14.2)

The inequality (14.2) is also called the quadrangle inequality [52].

The LWS problem with the restriction that the weight function is concave is called the
Concave Least Weight Subsequence (CLWS) problem. Hirschberg and Larmore [16] show
that the LWS problem can be solved in O(n?) sequential time, while the CLWS problem
can be solved in O(nlogn) time. Wilber [51] gives an O(n)-time algorithm for the CLWS
problem.

In the parallel setting, the CLWS problem seems to be more difficult. The best current
polylogarithmic time algorithm for the CLWS problem uses concave matrix multiplication
techniques and requires O(log? n) time with n?/log” n processors.

Larmore and Przytycka [37] have shown how to compute efficiently CLWS in sublinear
time with the total work smaller than quadratic. Using this approach they showed the
following fact (which has been later slightly improved [28, 39].

THEOREM 14.13 Optimal Huffman tree can be computed in O(y/nlogn) time with
linear number of processors.

Karpinski and Nekrich have shown an efficient parallel algorithm which approzimates opti-
mal Huffman code, see [5].

© 2005 by Chapman & Hall/CRC

Trees with Minimum Weighted Path Length 14-21

Similar, but much more complicated algorithm works for alphabetic trees. Again the CLWS
algorithm is the main tool.

THEOREM 14.14 [23]
Optimal alphabetic tree can be constructed in polylogarithmic time with quadratic number of
Processors.

In case of general binary search trees the situation is more difficult. Polylogarithmic time
algorithms need huge number of processors. However sublinear parallel time is easier.

THEOREM 14.15 [48] [31]
The OBST problem can be solved in (a) polylogarithmic time with O(n%) processors,
(b) in sublinear time and quadratic total work.

References

[1] Alok Aggarwal, Baruch Schieber, Takeshi Tokuyama: Finding a Minimum-Weight
k-Link Path Graphs with the Concave Monge Property and Applications. Discrete
& Computational Geometry 12: 263-280 (1994).

[2] Doris Altenkamp and Kurt Mehlhorn, “Codes: Unequal Probabilities, Unequal Letter
Costs,” J. Assoc. Comput. Mach. 27 (3) (July 1980), 412-427.

[3] M. J. Atallah, S. R. Kosaraju, L. L. Larmore, G. L. Miller, and S-H. Teng. Con-
structing trees in parallel, Proc. st AcM Symposium on Parallel Algorithms and
Architectures (1989), pp. 499-533.

[4] Julia Abrahams, “Code and Parse Trees for Lossless Source Encoding,” Sequences
97, (1997).

[5] P. Berman, M. Karpinski, M. Nekrich, Approximating Huffman codes in parallel,
Proc. 29th ICALP, LNCS wvol. 2380, Springer, 2002, pp. 845-855.

[6] P. Bradford, M. Golin, L. Larmore, W. Rytter, Optimal Prefix-Free Codes for Un-
equal Letter Costs and Dynamic Programming with the Monge Property, Journal of
Algorithms, Vol. 42, No. 2, February 2002, p. 277-303.

[7] A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilber, Geometric applications
of a matrix-searching algorithm, Algorithmica 2 (1987), pp. 195-208.

[8] Serap A. Savari, “Some Notes on Varn Coding,” IEEE Transactions on Information
Theory, 40 (1) (Jan. 1994), 181-186.

[9] Siu-Ngan Choi and M. Golin, “Lopsided trees: Algorithms, Analyses and Applica-
tions,” Automata, Languages and Programming, Proceedings of the 23rd Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP 96).

[10] N. Cot, “A linear-time ordering procedure with applications to variable length en-
coding,” Proc. 8th Annual Princeton Conference on Information Sciences and
Systems, (1974), pp. 460-463.

[11] A. M. Garsia and M. L. Wachs, A New algorithm for minimal binary search trees,
SIAM Journal of Computing 6 (1977), pp. 622-642.

[12] T. C.Hu. A new proof of the T-C algorithm, STAM Journal of Applied Mathematics
25 (1973), pp. 83-94.

[13] E.N. Gilbert, “Coding with Digits of Unequal Costs,” IEEE Trans. Inform. Theory,
41 (1995).

[14] A. Gibbons, W.Rytter, Efficient parallel algorithms, Cambridge Univ. Press 1997.

[15] M. Golin and G. Rote, “A Dynamic Programming Algorithm for Constructing Opti-

© 2005 by Chapman & Hall/CRC

14-22 Handbook of Data Structures and Applications

mal Prefix-Free Codes for Unequal Letter Costs,” Proceedings of the 22nd Interna-
tional Colloguium on Automata Languages and Programming (ICALP ’95), (July
1995) 256-267.

[16] D. S. Hirschberg and L. L. Larmore, The Least weight subsequence problem, Proc.
26" IEEE Symp. on Foundations of Computer Science Portland Oregon (Oct.
1985), pp. 137-143. Reprinted in STAM Journal on Computing 16 (1987), pp. 628
638.

[17] D. A. Huffman. A Method for the constructing of minimum redundancy codes, Proc.
IRE 40 (1952), pp. 1098-1101.

[18] T. C. Hu and A. C. Tucker, Optimal computer search trees and variable length
alphabetic codes, SIAM Journal of Applied Mathematics 21 (1971), pp. 514-532.

[19] J. H. Kingston, A new proof of the Garsia-Wachs algorithm, Journal of Algorithms
9 (1988) pp. 129-136.

[20] M. M. Klawe and B. Mumey, Upper and Lower Bounds on Constructing Alphabetic
Binary Trees, Proceedings of the 4™ ACM-SIAM Symposium on Discrete Algo-
rithms (1993), pp. 185-193.

[21] L. L. Larmore and D. S. Hirschberg, A fast algorithm for optimal length-limited
Huffman codes, Journal of the ACM 37 (1990), pp. 464-473.

[22] L. L. Larmore and T. M. Przytycka, The optimal alphabetic tree problem revisited,
Proceedings of the 21 St International Colloquium, ICALP’94, Jerusalem, LNCS
820, Springer-Verlag, (1994), pp. 251-262.

[23] L. L. Larmore, T. M. Przytycka, and W. Rytter, Parallel construction of optimal
alphabetic trees, Proceedings of the 5™ ACM Symposium on Parallel Algorithms
and Architectures (1993), pp. 214-223.

[24] M. Golin and G. Rote, “A Dynamic Programming Algorithm for Constructing Op-
timal Prefix-Free Codes for Uneq ual Letter Costs,” Proceedings of the 22nd Inter-
national Colloqguium on Automata Languages and Progr amming (ICALP °95),
(July 1995) 256-267. Expanded version to appear in IEEE Trans. Inform. Theory.

[25] R. Giittler, K. Mehlhorn and W. Schneider. Binary search trees: average and worst
case behavior, Electron. Informationsverarb Kybernet, 16 (1980) pp. 41-61.

[26] Sanjiv Kapoor and Edward Reingold, “Optimum Lopsided Binary Trees,” Journal
of the Association for Computing Machinery 36 (3) (July 1989), 573-590.

[27] R. M. Karp, “Minimum-Redundancy Coding for the Discrete Noiseless Channel,”
IRE Transactions on Information Theory, 7 (1961) 27-39.

[28] M. Karpinski, L. Larmore, Yakov Nekrich, A work efficient algorithm for the con-
struction of length-limited Huffman codes, to appear in Parallel Processing Letters.

[29] M. Karpinski, L. Larmore and W. Rytter, Sequential and parallel subquadratic work
constructions of approximately optimal binary search trees, the 7th ACM Symposium
on Discrete Algorithms, SODA’96.

[30] Marek Karpinski, Lawrence L. Larmore, and Wojciech Rytter. Correctness of con-
structing optimal alphabetic trees revisited. Theoretical Computer Science, 180(1-
2):309-324, 10 June 1997.

[31] M. Karpinski, W. Rytter, On a Sublinear Time Parallel Construction of Optimal
Binary Search Trees, Parallel Processing Letters, Volume 8 - Number 3, 1998.

[32] D. G. Kirkpatrick and T. M. Przytycka, Parallel construction of binary trees with
almost optimal weighted path length, Proc. 2nd Symp. on Parallel Algorithms and
Architectures (1990).

[33] D. G. Kirkpatrick and T. M. Przytycka, An optimal parallel minimax tree algorithm,

Proc. 224 [EEE Symp. of Parallel and Distributed Processing (1990), pp. 293-300.

© 2005 by Chapman & Hall/CRC

Trees with Minimum Weighted Path Length 14-23

[34] D. E. Knuth, Optimum binary search trees, Acta Informatica 1 (1971) pp. 14-25.

[35] D. E. Knuth. The Art of computer programming, Addison-Wesley (1973).

[36] L. L. Larmore, and T. M. Przytycka, Parallel construction of trees with optimal
weighted path length, Proc. 3rd oM Symposium on Parallel Algorithms and
Architectures (1991), pp. 71-80.

[37] L. L. Larmore, and T. M. Przytycka, Constructing Huffman trees in parallel, STAM
J. Computing 24(6), (1995) pp. 1163-1169.

[38] L.Larmore, W. Rytter, Optimal parallel algorithms for some dynamic programming
problems, IPL 52 (1994) 31-34.

[39] Ch. Levcopulos, T. Przytycka, A work-time trade-off in parallel computation of Huff-
man trees and concave least weight subsequence problem, Parallel Processing Letters
4(1-2) (1994) pp. 37-43.

[40] Ruy Luiz Milidiu, Eduardo Laber, The warm-up algorithm:a Lagrangian construction
of length limited Huffman codes, SIAM J. Comput. 30(5): 1405-1426 (2000).

[41] Ruy Luiz Milidi, Eduardo Sany Laber: Linear Time Recognition of Optimal L-
Restricted Prefix Codes (Extended Abstract). LATIN 2000: 227-236.

[42] Ruy Luiz Milidi, Eduardo Sany Laber: Bounding the Inefficiency of Length-Restricted
Prefix Codes. Algorithmica 31(4): 513-529 (2001).

[43] W. Rytter, Efficient parallel computations for some dynamic programming problems,
Theo. Comp. Sci. 59 (1988), pp. 297-307.

[44] K. Mehlhorn, Data structures and algorithms, vol. 1, Springer 1984.

[45] Y. Perl, M. R. Garey, and S. Even, “Efficient generation of optimal prefix code:
Equiprobable words using unequal cost letters,” Journal of the Association for
Computing Machinery 22 (2) (April 1975), pp 202-214.

[46] P. Ramanan, Testing the optimality of alphabetic trees, Theoretical Computer Sci-
ence 93 (1992), pp. 279-301.

[47] W. Rytter, The space complexity of the unique decipherability problem, IPL 16 (4)
1983.

[48] Fast parallel computations for some dynamic programming problems, Theoretical
Computer Science (1988).

[49] Baruch Schieber, Computing a Minimum Weight k-Link Path in Graphs with the
Concave Monge Property. 204-222.

[50] J. S. Vitter, “Dynamic Huffman Coding,” ACM Trans. Math. Software 15 (June
1989), pp 158-167.

[61] R. Wilber, The Concave least weight subsequence problem revisited, Journal of Al-
gorithms 9 (1988), pp. 418-425.

[52] F.F. Yao, Efficient dynamic programming using quadrangle inequalities, Proceedings
of the 12" ACM Symposium on Theory of Computing (1980), pp. 429-435.

© 2005 by Chapman & Hall/CRC

1o

B Trees

15.1 Introduction................cooiiiiiiiiiiiii .. 15-1
15.2 The Disk-Based Environment 15-2
15.3 The B-tree.........coooo i 15-3

B-tree Definition ® B-tree Query ® B-tree Insertion ®
B-tree Deletion
15.4 The B4-tree ... 15-10
Copy-up and Push-up * B+-tree Query * B+-tree
Insertion ® B-+-tree Deletion

15.5 Further Discussions ... 15-17
Efficiency Analysis ® Why is the B+-tree Widely
Donghui Zhang Accepted? * Bulk-Loading a B-+-tree ® Aggregation
Northeastern University Query in a B+4-tree

15.1 Introduction

We have seen binary search trees in Chapters 3 and 10. When data volume is large and
does not fit in memory, an extension of the binary search tree to disk-based environment
is the B-tree, originally invented by Bayer and McCreight [1]. In fact, since the B-tree is
always balanced (all leaf nodes appear at the same level), it is an extension of the balanced
binary search tree. Since each disk access exchanges a whole block of information between
memory and disk rather than a few bytes, a node of the B-tree is expanded to hold more
than two child pointers, up to the block capacity. To guarantee worst-case performance,
the B-tree requires that every node (except the root) has to be at least half full. An exact
match query, insertion or deletion need to access O(loggn) nodes, where B is the page
capacity in number of child pointers, and n is the number of objects.

Nowadays, every database management system (see Chapter 60 for more on applications
of data structures to database management systems) has implemented the B-tree or its
variants. Since the invention of the B-tree, there have been many variations proposed. In
particular, Knuth [4] defined the B*-tree as a B-tree in which every node has to be at least
2/3 full (instead of just 1/2 full). If a page overflows during insertion, the B*-tree applies a
local redistribution scheme to delay splitting the node till two another sibling node is also
full. At this time, the two nodes are split into three. Perhaps the best variation of the
B-tree is the B+-tree, whose idea was originally suggested by Knuth [4], but whose name
was given by Comer [2]. (Before Comer, Knuth used the name B*-tree to represent both
B*-tree and B+-tree.) In a B+-tree, every object stays at the leaf level. Update and query
algorithms need to be modified from those of the original B-tree accordingly.

The idea of the B-tree also motivates the design of many other disk-based index structures
like the R-tree [3], the state-of-art spatial index structure (Chapter 21).

15-1

© 2005 by Chapman & Hall/CRC

