
3
Trees

Dinesh P. Mehta
Colorado School of Mines

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.2 Tree Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

List Representation • Left Child-Right Sibling
Representation • Binary Tree Representation

3.3 Binary Trees and Properties . . . . . . . . . . . . . . . . . . . . . . 3-4
Properties • Binary Tree Representation

3.4 Binary Tree Traversals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
Inorder Traversal • Preorder Traversal • Postorder
Traversal • Level Order Traversal

3.5 Threaded Binary Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
Threads • Inorder Traversal of a Threaded Binary
Tree

3.6 Binary Search Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10
Definition • Search • Insert • Delete • Miscellaneous

3.7 Heaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13
Priority Queues • Definition of a Max-Heap •

Insertion • Deletion
3.8 Tournament Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16

Winner Trees • Loser Trees

3.1 Introduction

The tree is a natural representation for hierarchical information. Thus, trees are used to
represent genealogical information (e.g., family trees and evolutionary trees), organizational
charts in large companies, the directory structure of a file system on a computer, parse
trees in compilers and the structure of a knock-out sports tournament. The Dewey decimal
notation, which is used to classify books in a library, is also a tree structure. In addition to
these and other applications, the tree is used to design fast algorithms in computer science
because of its efficiency relative to the simpler data structures discussed in Chapter 2.
Operations that take linear time on these structures often take logarithmic time on an
appropriately organized tree structure. For example, the average time complexity for a
search on a key is linear on a linked list and logarithmic on a binary search tree. Many of
the data structures discussed in succeeding chapters of this handbook are tree structures.

Several kinds of trees have been defined in the literature:

1. Free or unrooted tree: this is defined as a graph (a set of vertices and a set of
edges that join pairs of vertices) such that there exists a unique path between any
two vertices in the graph. The minimum spanning tree of a graph is a well-known
example of a free tree. Graphs are discussed in Chapter 4.

2. Rooted tree: a finite set of one or more nodes such that
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3-2 Handbook of Data Structures and Applications

(a) There is a special node called the root.

(b) The remaining nodes are partitioned into n ≥ 0 disjoint sets T1, ..., Tn, where
each of these sets is a tree. T1, ..., Tn are called the subtrees of the root.

If the order in which the subtrees are arranged is not important, then the tree is
a rooted, unordered (or oriented) tree. If the order of the subtrees is important,
the tree is rooted and ordered. Figure 3.1 depicts the relationship between the
three types of trees. We will henceforth refer to the rooted, ordered tree simply
as “tree”.
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FIGURE 3.1: The three trees shown are distinct if they are viewed as rooted, ordered trees.
The first two are identical if viewed as oriented trees. All three are identical if viewed as
free trees.

3. k-ary tree: a finite set of nodes that is either empty or consists of a root and the
elements of k disjoint k-ary trees called the 1st, 2nd, ..., kth subtrees of the root.
The binary tree is a k-ary tree with k = 2. Here, the first and second subtrees
are respectively called the left and right subtrees of the root. Note that binary
trees are not trees. One difference is that a binary tree can be empty, whereas a
tree cannot. Second, the two trees shown in Figure 3.2 are different binary trees
but would be different drawings of the same tree.

B

A A

B

FIGURE 3.2: Different binary trees.

Figure 3.3 shows a tree with 11 nodes. The number of subtrees of a node is its degree.
Nodes with degree 0 are called leaf nodes. Thus, node A has degree 3, nodes B, D, and I
have degree 2, node E has degree 1, and nodes C, F , G, H , J , and K have degree 0 (and
are leaves of the tree). The degree of a tree is the maximum of the degree of the nodes
in the tree. The roots of the subtrees of a node X are its children. X is the parent of
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Trees 3-3

its children. Children of the same parent are siblings. In the example, B, C, and D are
each other’s siblings and are all children of A. The ancestors of a node are all the nodes
excluding itself along the path from the root to that node. The level of a node is defined by
letting the root be at level zero. If a node is at level l, then its children are at level l + 1.
The height of a tree is the maximum level of any node in the tree. The tree in the example

information on trees.
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FIGURE 3.3: An example tree.

3.2 Tree Representation

3.2.1 List Representation

The tree of Figure 3.3 can be written as the generalized list (A (B (E (I (J, K)), F), C,
D(G, H))). The information in the root node comes first followed by a list of subtrees of
the root. This enables us to represent a tree in memory using generalized lists as discussed
in Chapter 2.

3.2.2 Left Child-Right Sibling Representation

Figure 3.4(a) shows the node structure used in this representation. Each node has a pointer
to its leftmost child (if any) and to the sibling on its immediate right (if any). The tree in
Figure 3.3 is represented by the tree in Figure 3.4(b).

3.2.3 Binary Tree Representation

Observe that the left child-right sibling representation of a tree (Figure 3.4(b)) may be
viewed as a binary tree by rotating it clockwise by 45 degrees. This gives the binary tree
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FIGURE 3.4: Tree Representations.

representation shown in Figure 3.4(c). This representation can be extended to represent a
forest, which is defined as an ordered set of trees. Here, the roots of the trees are viewed as
siblings. Thus, a root’s right pointer points to the next tree root in the set. We have

LEMMA 3.1 There is a one-to-one correspondence between the set of forests and the
set of binary trees.

3.3 Binary Trees and Properties

Binary trees were defined in Section 3.1. For convenience, a binary tree is sometimes
extended by adding external nodes. External nodes are imaginary nodes that are added
wherever an empty subtree was present in the original tree. The original tree nodes are
known as internal nodes. Figure 3.5(a) shows a binary tree and (b) the corresponding
extended tree. Observe that in an extended binary tree, all internal nodes have degree 2
while all external nodes have degree 0. (Some authors use the term full binary tree to
denote a binary tree whose nodes have 0 or two children.) The external path length of a
tree is the sum of the lengths of all root-to-external node paths in the tree. In the example,
this is 2 + 2 + 3 + 3 + 2 = 12. The internal path length is similarly defined by adding
lengths of all root-to-internal node paths. In the example, this quantity is 0 + 1 + 1 + 2
= 4.

3.3.1 Properties

LEMMA 3.2 A binary tree with n internal nodes has n + 1 external nodes.
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FIGURE 3.5: (b) shows the extended binary tree corresponding to the binary tree of (a).
External nodes are depicted by squares.

Proof Each internal node in the extended tree has branches leading to two children.
Thus, the total number of branches is 2n. Only n− 1 internal nodes have a single incoming
branch from a parent (the root does not have a parent). Thus, each of the remaining n + 1
branches points to an external node.

LEMMA 3.3 For any non-empty binary tree with n0 leaf nodes and n2 nodes of degree
2, n0 = n2 + 1.

Proof Let n1 be the number of nodes of degree 1 and n = n0 + n1 + n2 (Eq. 1) be the
total number of nodes. The number of branches in a binary tree is n−1 since each non-root
node has a branch leading into it. But, all branches stem from nodes of degree 1 and 2.
Thus, the number of branches is n1 + 2n2. Equating the two expressions for number of
branches, we get n = n1 + 2n2 + 1 (Eq. 2). From Eqs. 1 and 2, we get n0 = n2 + 1.

LEMMA 3.4 The external path length of any binary tree with n internal nodes is 2n
greater than its internal path length.

Proof The proof is by induction. The lemma clearly holds for n = 0 when the internal
and external path lengths are both zero. Consider an extended binary tree T with n internal
nodes. Let ET and IT denote the external and internal path lengths of T . Consider the
extended binary tree S that is obtained by deleting an internal node whose children are both
external nodes (i.e., a leaf) and replacing it with an external node. Let the deleted internal
node be at level l. Thus, the internal path length decreases by l while the external path
length decreases by 2(l +1)− l = l +2. From the induction hypothesis, ES = IS +2(n− 1).
But, ET = ES + l + 2 and IT = IS + l. Thus, ET − IT = 2n.

LEMMA 3.5 The maximum number of nodes on level i of a binary tree is 2i, i ≥ 0.

Proof This is easily proved by induction on i.
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LEMMA 3.6 The maximum number of nodes in a binary tree of height k is 2k+1 − 1.

Proof Each level i, 0 ≤ i ≤ k, has 2i nodes. Summing over all i results in
∑k

i=0 2i =
2k+1 − 1.

LEMMA 3.7 The height of a binary tree with n internal nodes is at least �log2(n + 1)�
and at most n − 1.

Proof The worst case is a skewed tree (Figure 3.6(a)) and the best case is a tree with 2i

nodes at every level i except possibly the bottom level (Figure 3.6(b)). If the height is h,
then n + 1 ≤ 2h, where n + 1 is the number of external nodes.
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FIGURE 3.6: (a) Skewed and (b) complete binary trees.

LEMMA 3.8 The number of distinct binary trees with n nodes is 1
n+1

(
2n
n

)
.

Proof However, we note that Cn =
1

n+1

(
2n
n

)
are known as the Catalan numbers, which occur frequently in combinatorial prob-

lems. The Catalan number Cn also describes the number of trees with n + 1 nodes and the
number of binary trees with 2n + 1 nodes all of which have 0 or 2 children.

3.3.2 Binary Tree Representation

Binary trees are usually represented using nodes and pointers. A TreeNode class may be
defined as:

class TreeNode {
TreeNode* LeftChild;
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TreeNode* RightChild;
KeyType data;

};

In some cases, a node might also contain a parent pointer which facilitates a “bottom-up”
traversal of the tree. The tree is accessed by a pointer root of type TreeNode* to its root.
When the binary tree is complete (i.e., there are 2i nodes at every level i, except possibly
the last level which has nodes filled in from left to right), it is convenient to use an array
representation. The complete binary tree in Figure 3.6(b) can be represented by the array

1 2 3 4 5 6 7 8 9 10 11 12
[ A B C D E F G H I J K L ]

Observe that the children (if any) of a node located at position i of the array can be found
at positions 2i and 2i + 1 and its parent at �i/2�.

3.4 Binary Tree Traversals

Several operations on trees require one to traverse the entire tree: i.e., given a pointer to the
root of a tree, process every node in the tree systematically. Printing a tree is an example of
an operation that requires a tree traversal. Starting at a node, we can do one of three things:
visit the node (V ), traverse the left subtree recursively (L), and traverse the right subtree
recursively (R). If we adopt the convention that the left subtree will be visited before the
right subtree, we have three types of traversals LV R, V LR, and LRV which are called
inorder, preorder, and postorder, respectively, because of the position of V with respect to
L and R. In the following, we will use the expression tree in Figure 3.7 to illustrate the
three traversals, which result in infix, prefix, and postfix forms of the expression. A fourth
traversal, the level order traversal, is also studied.

A B

*

C D

*

+

FIGURE 3.7: An expression tree.

3.4.1 Inorder Traversal

The following is a recursive algorithm for an inorder traversal that prints the contents of
each node when it is visited. The recursive function is invoked by the call inorder(root).
When run on the example expression tree, it returns A*B+C*D.

inorder(TreeNode* currentNode)
{
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if (currentNode) {
inorder(currentNode->LeftChild);
cout << currentNode->data;
inorder(currentNode->RightChild);

}
}

3.4.2 Preorder Traversal

The following is a recursive algorithm for a preorder traversal that prints the contents of
each node when it is visited. The recursive function is invoked by the call preorder(root).
When run on the example expression tree, it returns +*AB*CD.

preorder(TreeNode* currentNode)
{

if (currentNode) {
cout << currentNode->data;
preorder(currentNode->LeftChild);
preorder(currentNode->RightChild);

}
}

3.4.3 Postorder Traversal

The following is a recursive algorithm for a postorder traversal that prints the contents of
each node when it is visited. The recursive function is invoked by the call postorder(root).
When run on the example expression tree, it prints AB*CD*+.

postorder(TreeNode* currentNode)
{

if (currentNode) {
postorder(currentNode->LeftChild);
postorder(currentNode->RightChild);
cout << currentNode->data;

}
}

The complexity of each of the three algorithms is linear in the number of tree nodes. Non-
recursive versions of these algorithms may be found in [6]. Both versions require (implicitly
or explicitly) a stack.

3.4.4 Level Order Traversal

The level order traversal uses a queue. This traversal visits the nodes in the order suggested
in Figure 3.6(b). It starts at the root and then visits all nodes in increasing order of their
level. Within a level, the nodes are visited in left-to-right order.

LevelOrder(TreeNode* root)
{

Queue q<TreeNode*>;
TreeNode* currentNode = root;
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while (currentNode) {
cout << currentNode->data;
if (currentNode->LeftChild) q.Add(currentNode->LeftChild);
if (currentNode->RightChild) q.Add(currentNode->RightChild);
currentNode = q.Delete(); //q.Delete returns a node pointer

}
}

3.5 Threaded Binary Trees

3.5.1 Threads

Lemma 3.2 implies that a binary tree with n nodes has n + 1 null links. These null links
can be replaced by pointers to nodes called threads. Threads are constructed using the
following rules:

1. A null right child pointer in a node is replaced by a pointer to the inorder successor
of p (i.e., the node that would be visited after p when traversing the tree inorder).

2. A null left child pointer in a node is replaced by a pointer to the inorder prede-
cessor of p.

Figure 3.8 shows the binary tree of Figure 3.7 with threads drawn as broken lines. In order

+

A B

*

C D

*

FIGURE 3.8: A threaded binary tree.

to distinguish between threads and normal pointers, two boolean fields LeftThread and
RightThread are added to the node structure. If p->LeftThread is 1, then p->LeftChild
contains a thread; otherwise it contains a pointer to the left child. Additionally, we assume
that the tree contains a head node such that the original tree is the left subtree of the head
node. The LeftChild pointer of node A and the RightChild pointer of node D point to
the head node.

3.5.2 Inorder Traversal of a Threaded Binary Tree

Threads make it possible to perform an inorder traversal without using a stack. For any
node p, if p’s right thread is 1, then its inorder successor is p->RightChild. Otherwise
the inorder successor is obtained by following a path of left-child links from the right child
of p until a node with left thread 1 is reached. Function Next below returns the inorder
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successor of currentNode (assuming that currentNode is not 0). It can be called repeatedly
to traverse the entire tree in inorder in O(n) time. The code below assumes that the last
node in the inorder traversal has a threaded right pointer to a dummy head node.

TreeNode* Next(TreeNode* currentNode)
{

TreeNode* temp = currentNode->RightChild;
if (currentNode->RightThread == 0)

while (temp->LeftThread == 0)
temp = temp->LeftChild;

currentNode = temp;
if (currentNode == headNode)

return 0;
else

return currentNode;
}

Threads simplify the algorithms for preorder and postorder traversal. It is also possible
to insert a node into a threaded tree in O(1) time [6].

3.6 Binary Search Trees

3.6.1 Definition

A binary search tree (BST) is a binary tree that has a key associated with each of its nodes.
The keys in the left subtree of a node are smaller than or equal to the key in the node and
the keys in the right subtree of a node are greater than or equal to the key in the node. To
simplify the discussion, we will assume that the keys in the binary search tree are distinct.
Figure 3.9 shows some binary trees to illustrate the definition.

18

19
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10

7 9

12

4 16

2 6 14 18

5

10

15

25

20

(a) (b) (c)

FIGURE 3.9: Binary trees with distinct keys: (a) is not a BST. (b) and (c) are BSTs.

3.6.2 Search

We describe a recursive algorithm to search for a key k in a tree T : first, if T is empty, the
search fails. Second, if k is equal to the key in T ’s root, the search is successful. Otherwise,
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we search T ’s left or right subtree recursively for k depending on whether it is less or greater
than the key in the root.

bool Search(TreeNode* b, KeyType k)
{

if (b == 0) return 0;
if (k == b->data) return 1;
if (k < b->data) return Search(b->LeftChild,k);
if (k > b->data) return Search(b->RightChild,k);

}

3.6.3 Insert

To insert a key k, we first carry out a search for k. If the search fails, we insert a new node
with k at the null branch where the search terminated. Thus, inserting the key 17 into the
binary search tree in Figure 3.9(b) creates a new node which is the left child of 18. The
resulting tree is shown in Figure 3.10(a).

4 16

2 6 18

14

(a) (b)

4 16

2 6 1814

17

12

FIGURE 3.10: Tree of Figure 3.9(b) with (a) 18 inserted and (b) 12 deleted.

typedef TreeNode* TreeNodePtr;

Node* Insert(TreeNodePtr& b, KeyType k)
{

if (b == 0) {b = new TreeNode; b->data= k; return b;}
if (k == b->data) return 0; // don’t permit duplicates
if (k < b->data) Insert(b->LeftChild, k);
if (k > b->data) Insert(b->RightChild, k);

}

3.6.4 Delete

The procedure for deleting a node x from a binary search tree depends on its degree. If x
is a leaf, we simply set the appropriate child pointer of x’s parent to 0 and delete x. If x
has one child, we set the appropriate pointer of x’s parent to point directly to x’s child and

© 2005 by Chapman & Hall/CRC



3-12 Handbook of Data Structures and Applications

then delete x.
If x has two children, we replace its key with the key in its inorder successor y and then
delete node y. The inorder successor contains the smallest key greater than x’s key. This
key is chosen because it can be placed in node x without violating the binary search tree
property. Since y is obtained by first following a RightChild pointer and then following
LeftChild pointers until a node with a null LeftChild pointer is encountered, it follows
that y has degree 0 or 1. Thus, it is easy to delete y using the procedure described above.
Consider the deletion of 12 from Figure 3.9(b). This is achieved by replacing 12 with 14
in the root and then deleting the leaf node containing 14. The resulting tree is shown in

3.6.5 Miscellaneous

Although Search, Insert, and Delete are the three main operations on a binary search tree,
there are others that can be defined which we briefly describe below.

• Minimum and Maximum that respectively find the minimum and maximum
elements in the binary search tree. The minimum element is found by starting
at the root and following LeftChild pointers until a node with a 0 LeftChild
pointer is encountered. That node contains the minimum element in the tree.

• Another operation is to find the kth smallest element in the binary search tree.
For this, each node must contain a field with the number of nodes in its left
subtree. Suppose that the root has m nodes in its left subtree. If k ≤ m, we
recursively search for the kth smallest element in the left subtree. If k = m + 1,
then the root contains the kth smallest element. If k > m+1, then we recursively
search the right subtree for the k − m − 1st smallest element.

• The Join operation takes two binary search trees A and B as input such that
all the elements in A are smaller than all the elements of B. The objective is to
obtain a binary search tree C which contains all the elements originally in A and
B. This is accomplished by deleting the node with the largest key in A. This
node becomes the root of the new tree C. Its LeftChild pointer is set to A and
its RightChild pointer is set to B.

• The Split operation takes a binary search tree C and a key value k as input. The
binary search tree is to be split into two binary search trees A and B such that
all keys in A are less than or equal to k and all keys in B are greater than k.
This is achieved by searching for k in the binary search tree. The trees A and B

• An inorder traversal of a binary search tree produces the elements of the binary
search tree in sorted order. Similarly, the inorder successor of a node with key k
in the binary search tree yields the smallest key larger than k in the tree. (Note
that we used this property in the Delete operation described in the previous
section.)

All of the operations described above take O(h) time, where h is the height of the binary
search tree. The bounds on the height of a binary tree are derived in Lemma 3.7. It has
been shown that when insertions and deletions are made at random, the height of the binary
search tree is O(log n) on the average.
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Figure 3.10(b).

are created as the search proceeds down the tree as shown in Figure 3.11.
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FIGURE 3.11: Splitting a binary search tree with k = 26.

3.7 Heaps

3.7.1 Priority Queues

Heaps are used to implement priority queues. In a priority queue, the element with highest
(or lowest) priority is deleted from the queue, while elements with arbitrary priority are
inserted. A data structure that supports these operations is called a max(min) priority
queue. Henceforth, in this chapter, we restrict our discussion to a max priority queue. A
priority queue can be implemented by a simple, unordered linked list. Insertions can be
performed in O(1) time. However, a deletion requires a search for the element with the
largest priority followed by its removal. The search requires time linear in the length of
the linked list. When a max heap is used, both of these operations can be performed in
O(log n) time.

3.7.2 Definition of a Max-Heap

A max heap is a complete binary tree such that for each node, the key value in the node is
greater than or equal to the value in its children. Observe that this implies that the root
contains the largest value in the tree. Figure 3.12 shows some examples of max heaps.

22

16 20

15 3

12

6 19

10

8 6

4

6

1

FIGURE 3.12: Max heaps.

We define a class Heap with the following data members.
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private:
Element *heap;
int n; // current size of max heap
int MaxSize; // Maximum allowable size of the heap

The heap is represented using an array (a consequence of the complete binary tree property)
which is dynamically allocated.

3.7.3 Insertion

Suppose that the max heap initially has n elements. After insertion, it will have n + 1
elements. Thus, we need to add a node so that the resulting tree is a complete binary tree
with n + 1 nodes. The key to be inserted is initially placed in this new node. However,
the key may be larger than its parent resulting in a violation of the max property with its
parent. In this case, we swap keys between the two nodes and then repeat the process at
the next level. Figure 3.13 demonstrates two cases of an insertion into a max heap.

20

15 12

4 3

20

15 12

4 3

20

15 12

4 3 x

x=8

x=16

8

20

15

4 3 12

16

Insert x

FIGURE 3.13: Insertion into max heaps.

The algorithm is described below. In the worst case, the insertion algorithm moves up
the heap from leaf to root spending O(1) time at each level. For a heap with n elements,
this takes O(log n) time.

void MaxHeap::Insert(Element x)
{

if (n == MaxSize) {HeapFull(); return;}
n++;
for (int i = n; i > 1; i = i/2 ) {

if (x.key <= heap[i/2].key) break;
heap[i] = heap[i/2];

}
heap[i] = x;

}
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3.7.4 Deletion

The element to be deleted (i.e., the maximum element in the heap) is removed from the
root node. Since the binary tree must be restructured to become a complete binary tree
on n − 1 elements, the node in position n is deleted. The element in the deleted node is
placed in the root. If this element is less than either of the root’s (at most) two children,
there is a violation of the max property. This is fixed by swapping the value in the root
with its larger child. The process is repeated at the other levels until there is no violation.
Figure 3.14 illustrates deletion from a max heap.

15 12

4

320

15 12

4 3

DeleteMax

15 12

4 3

12

4

12

15

3

15

4

3

FIGURE 3.14: Deletion from max heaps.

The deletion algorithm is described below. In the worst case, the deletion algorithm
moves down the heap from root to leaf spending O(1) time at each level. For a heap with
n elements, this takes O(log n) time.

Element* MaxHeap::DeleteMax(Element& x)
{

if (n == 0) {HeapEmpty(); return 0;}
x = heap[1];
Element last = heap[n];
n--;
for (int i = 1, j = 2; j <= n; i = j, j *= 2) {

if (j < n)
if (heap[j].key < heap[j+1].key) j++;

// j points to the larger child
if (last.key >= heap[j].key) break;
heap[i] = heap[j]; // move child up

}
heap[i] = last;
return &x;

}
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3.8 Tournament Trees

Consider the following problem: suppose we have k sequences, each of which is sorted in
nondecreasing order, that are to be merged into one sequence in nondecreasing order. This
can be achieved by repeatedly transferring the element with the smallest key to an output
array. The smallest key has to be found from the leading elements in the k sequences.
Ordinarily, this would require k − 1 comparisons for each element transferred. However,
with a tournament tree, this can be reduced to log2 k comparisons per element.

3.8.1 Winner Trees

A winner tree is a complete binary tree in which each node represents the smaller of its two
children. The root represents the smallest node in the tree. Figure 3.15 illustrates a winner
tree with k = 8 sequences. The winner of the tournament is the value 8 from sequence 0.
The winner of the tournament is the smallest key from the 8 sequences and is transferred

8 22 15 45 37 41 18 26

8 15 37 18

8 18

8

20

25

30

20

26

50

62

40

50

42

43

21

36

31

38

19

S0 S1 S2 S3 S4 S5 S6 S7

FIGURE 3.15: A winner tree for k = 8. Three keys in each of the eight sequences are
shown. For example, sequence 2 consists of 15, 20, and 26.

to an output array. The next element from sequence 0 is now brought into play and a

easy to see that the tournament winner can be computed in Θ(log n) time.

3.8.2 Loser Trees

The loser tree is an alternative representation that stores the loser of a match at the cor-

advantage of the loser tree is that to restructure the tree after a winner has been output, it
is sufficient to examine nodes on the path from the leaf to the root rather than the siblings
of nodes on this path.
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tournament is played to determine the next winner. This is illustrated in Figure 3.16. It is

responding node. The loser tree corresponding to Figure 3.15 is shown in Figure 3.17. An
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FIGURE 3.16:
tournament. Matches are played at the shaded nodes.
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FIGURE 3.17: Loser tree corresponding to the winner tree of Figure 3.15.

© 2005 by Chapman & Hall/CRC

Winner tree of Figure 3.15 after the next element of sequence 0 plays the
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