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4.1 Introduction

Trees, as data structures, are somewhat limited because they can only represent relations of
a hierarchical nature, such as that of parent and child. A generalization of a tree so that a
binary relation is allowed between any pair of elements would constitute a graph—formally
defined as follows:

A graph G = (V, E) consists of a finite set of vertices V = {υ1, υ2, . . . , υn} and a finite
set E of edges E = {e1, e2, . . . , em To each edge e there corresponds a
pair of vertices (u, υ) which e is said to be incident on. While drawing a graph we represent
each vertex by a dot and each edge by a line segment joining its two end vertices . A graph

associated with each edge e (also called arc) is an ordered pair. Edge e is then said to be
directed from vertex u to vertex υ, and the direction is shown by an arrowhead on the edge.
A graph is undirected if the end vertices of all the edges are unordered (i.e., edges have no
direction). Throughout this chapter we use the letters n and m to denote the number of
vertices |V | and number of edges |E| respectively, in a graph. A vertex is often referred to
as a node (a term more popular in applied fields).

Two or more edges having the same pair of end vertices are called parallel edges or multi
edges , and a graph with multi edges is sometimes referred to as a multigraph. An edge whose
two end vertices are the same is called a self-loop (or just loop). A graph in which neither
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} (see Figure 4.1).

is said to be a directed graph (or digraph for short) (see Figure 4.2) if the vertex pair (u, υ)
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FIGURE 4.1: Undirected graph with 5 vertices and 6 edges.

FIGURE 4.2: Digraph with 6 vertices and 11 edges.

parallel edges nor self-loops are allowed is often called a simple graph. If both self-loops and
parallel edges are allowed we have a general graph (also referred to as pseudograph). Graphs

If the graph is simple we can refer to each edge by its end vertices. The number of edges
incident on a vertex v, with self-loops counted twice, is called the degree, deg(v), of vertex
v. In directed graphs a vertex has in-degree (number of edges going into it) and out-degree
(number of edges going out of it).

In a digraph if there is a directed edge (x, y) from x to y, vertex y is called a successor
of x and vertex x is called a predecessor of y. In case of an undirected graph two vertices
are said to be adjacent or neighbors if there is an edge between them.

A weighted graph is a (directed or undirected) graph in which a real number is assigned to
each edge. This number is referred to as the weight of that edge. Weighted directed graphs
are often referred to as networks . In a practical network this number (weight) may represent
the driving distance, the construction cost, the transit time, the reliability, the transition
probability, the carrying capacity, or any other such attribute of the edge [1, 4, 18, 20].

Graphs are the most general and versatile data structures. Graphs have been used to
model and solve a large variety of problems in the discrete domain. In their modeling and
problem solving ability graphs are to the discrete world what differential equations are to
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in Figure 4.1 and Figure 4.2 are both simple but the graph in Figure 4.3 is pseudograph.
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FIGURE 4.3: A pseudograph of 6 vertices and 10 edges.

the world of the continuum.

4.2 Graph Representations

For a given graph a number of different representations are possible. The ease of imple-
mentation, as well as the efficiency of a graph algorithm depends on the proper choice of
the graph representation. The two most commonly used data structures for representing a
graph (directed or undirected) are adjacency lists and adjacency matrix . In this section we
discuss these and other data structures used in representing graphs.

Adjacency Lists: The adjacency lists representation of a graph G consists of an array
Adj of n linked lists, one for each vertex in G, such that Adj[υ] for vertex υ consists of all
vertices adjacent to υ. This list is often implemented as a linked list. (Sometimes it is also
represented as a table, in which case it is called the star representation [18].)

Adjacency Matrix: The adjacency matrix of a graph G = (V, E) is an n × n matrix
A = [aij ] in which aij = 1 if there is an edge from vertex i to vertex j in G; otherwise
aij = 0. Note that in an adjacency matrix a self-loop can be represented by making the
corresponding diagonal entry 1. Parallel edges could be represented by allowing an entry
to be greater than 1, but doing so is uncommon, since it is usually convenient to represent
each element in the matrix by a single bit. The adjacency lists and adjacency matrix of an
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undirected graph are shown in Figure 4.4, and the corresponding two representations for a
digraph are shown in Figure 4.5.
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(a) (b)

⎛

⎜⎜⎝

0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0

⎞

⎟⎟⎠

(c)

FIGURE 4.4: An undirected graph (a) with four vertices and four edges; (b) its adjacency
lists representation, and (c) its adjacency matrix representation.

(a) (b)

⎛

⎜⎜⎜⎜⎝

0 1 0 1 0
1 0 0 1 0
0 1 1 1 0
0 0 0 0 0
0 1 0 0 0

⎞

⎟⎟⎟⎟⎠

(c)

FIGURE 4.5: Two representations: (a) A digraph with five vertices and eight edges; (b) its
adjacency lists representation, and (c) its adjacency matrix representation.
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Clearly the memory required to store a graph of n vertices in the form of adjacency matrix
is O(n2), whereas for storing it in the form of its adjacency lists is O(m + n). In general
if the graph is sparse, adjacency lists are used but if the graph is dense, adjacency matrix
is preferred. The nature of graph processing is an important factor in selecting the data
structure.

There are other less frequently used data structures for representing graphs, such as
forward or backward star , the edge-list , and vertex-edge incidence matrix [1, 4, 15, 18, 20].

4.2.1 Weighted Graph Representation

Both adjacency lists and adjacency matrix can be adapted to take into account the weights
associated with each edge in the graph. In the former case an additional field is added in the
linked list to include the weight of the edge; and in the latter case the graph is represented
by a weight matrix in which the (i, j)th entry is the weight of edge (i, j) in the weighted
graph. These two representations for a weighted graph are shown in Figure 4.6. The boxed
numbers next to the edges in Figure 4.6(a) are the weights of the corresponding edges.

It should be noted that in a weight matrix, W , of a weighted graph, G, if there is no edge
(i, j) in G, the corresponding element wij is usually set to ∞ (in practice, some very large
number). The diagonal entries are usually set to ∞ (or to some other value depending on
the application and algorithm). It is easy to see that the weight matrix of an undirected
graph (like the adjacency matrix) is symmetric.

(a) (b)

W =

⎛

⎜⎜⎜⎜⎝

− ∞ 35 ∞ 43
19 − ∞ 85 ∞
18 43 − 11 ∞
∞ ∞ ∞ − ∞
∞ 16 ∞ 77 −

⎞

⎟⎟⎟⎟⎠

(c)

FIGURE 4.6: Two representations: (a) A weighted digraph with five vertices and nine
edges; (b) its adjacency lists, and (c) its weight matrix.
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4.3 Connectivity, Distance, and Spanning Trees

Just as two vertices x and y in a graph are said to be adjacent if there is an edge joining
them, two edges are said to be adjacent if they share (i.e., are incident on) a common
vertex. A simple path, or path for short, is a sequence of adjacent edges (υ1, υ2), (υ2, υ3),
. . ., (υk−2, υk−1), (υk−1, υk), sometimes written (υ1, υ2, . . . , υk), in which all the vertices
υ1, υ2, . . . , υk are distinct except possibly υ1 = υk. In a digraph this path is said to be
directed from υ1 to υk; in an undirected graph this path is said to be between υ1 and υk.
The number of edges in a path, in this case, k − 1, is called the length of the path. In

6 4 4 1 1 2 6 4 1 2

υ6 2

a directed path of length 4 from vertex 3 to vertex 4. A cycle or circuit is a path in which
the first and the last vertices are the same. In Figure 4.3 (υ3, υ6, υ4, υ1, υ3) is a cycle of
length 4. In Figure 4.6 (3, 2, 1, 3) is a cycle of length 3. A graph that contains no cycle is
called acyclic.

A subgraph of a graph G = (V, E) is a graph whose vertices and edges are in G. A
subgraph g of G is said to be induced by a subset of vertices S ⊆ V if g results when the
vertices in V − S and all the edges incident on them are removed from G. For example, in
Figure 4.3, the subgraph induced by {υ1, υ3, υ4} would consists of these three vertices and
four edges {e3, e5, e6, e7}.

An undirected graph G is said to be connected if there is at least one path between every
pair of vertices υi and υj in G. Graph G is said to be disconnected if it has at least one pair
of distinct vertices u and v such that there is no path between u and v. Two vertices x and
y in an undirected graph G = (V, E) are said to be connected if there exists a path between
x and y. This relation of being connected is an equivalence relation on the vertex set V ,
and therefore it partitions the vertices of G into equivalence classes. Each equivalence class
of vertices induces a subgraph of G. These subgraphs are called connected components
of G. In other words, a connected component is a maximal connected subgraph of G. A
connected graph consists of just one component, whereas a disconnected graph consists of

But the graph given in Figure 4.7 is disconnected, consisting of four components.

FIGURE 4.7: A disconnected graph of 10 vertices, 8 edges, and 4 components.
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Figure 4.3 sequence (υ , υ ), (υ , υ ), (υ , υ ) = (υ , υ , υ , υ ) is a path of length 3 between
and υ . In the digraph in Figure 4.6 sequence (3, 1), (1, 5), (5, 2), (2, 4) = (3, 1, 5, 2, 4) is

several (connected) components. Each of the graphs in Figures 4.1, 4.3, and 4.4 is connected.
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edges. Such a component (subgraph or graph) is called an isolated vertex . Equivalently,
a vertex with zero degree is called an isolated vertex. Likewise, a graph (subgraph or
component) may consist of just one edge, such as edge (i, d) in Figure 4.7.

One of the simplest and often the most important and useful questions about a given
graph G is: Is G connected? And if G is not connected what are its connected components?
This question will be taken up in the next section, and an algorithm for determining the
connected components will be provided; but first a few more concepts and definitions.

Connectivity in a directed graph G is more involved. A digraph is said to be connected if
the undirected graph obtained by ignoring the edge directions in G is connected. A directed
graph is said to be strongly connected if for every pair of vertices υi and υj there exists at
least one directed path from υi to υj and at least one from υj to υi. A digraph which is
connected but not strongly connected is called weakly connected . A disconnected digraph
(like a disconnected undirected graph) consists of connected components; and a weakly-
connected digraph consists of strongly-connected components. For example, the connected

the following subsets of vertices {1, 2},{3},{4}, and {5}.
Another important question is that of distance from one vertex to another. The distance

from vertex a to b is the length of the shortest path (i.e., a path of the smallest length)
from a to b, if such a path exists. If no path from a to b exists, the distance is undefined
and is often set to ∞. Thus, the distance from a vertex to itself is 0; and the distance from
a vertex to an adjacent vertex is 1. In an undirected graph distance from a to b equals the
distance from b to a, i.e., it is symmetric. It is also not difficult to see that the distances in a
connected undirected graph (or a strongly connected digraph) satisfy the triangle inequality.
In a connected, undirected (unweighted) graph G, the maximum distance between any pair
of vertices is called the diameter of G.

4.3.1 Spanning Trees

A connected, undirected, acyclic (without cycles) graph is called a tree, and a set of trees
is called a forest . We have already seen rooted trees and forests of rooted trees in the
preceding chapter, but the unrooted trees and forests discussed in this chapter are graphs
of a very special kind that play an important role in many applications.

In a connected undirected graph G there is at least one path between every pair of vertices
and the absence of a cycle implies that there is at most one such path between any pair of
vertices in G. Thus if G is a tree, there is exactly one path between every pair of vertices
in G. The argument is easily reversed, and so an undirected graph G is a tree if and only
if there is exactly one path between every pair of vertices in G. A tree with n vertices has
exactly (n− 1) edges. Since (n− 1) edges are the fewest possible to connect n points, trees
can be thought of as graphs that are minimally connected . That is, removing any edge from
a tree would disconnect it by destroying the only path between at least one pair of vertices.

A spanning tree for a connected graph G is a subgraph of G which is a tree containing
every vertex of G. If G is not connected, a set consisting of one spanning tree for each
component is called a spanning forest of G. To construct a spanning tree (forest) of a given
undirected graph G, we examine the edges of G one at a time and retain only those that
do not not form a cycle with the edges already selected. Systematic ways of examining the
edges of a graph will be discussed in the next section.

© 2005 by Chapman & Hall/CRC

digraph in Figure 4.5 consists of four strongly-connected components—induced by each of

Notice that a component may consist of just one vertex such as j in Figure 4.7 with no
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4.4 Searching a Graph

It is evident that for answering almost any nontrivial question about a given graph G we
must examine every edge (and in the process every vertex) of G at least once. For example,
before declaring a graph G to be disconnected we must have looked at every edge in G; for
otherwise, it might happen that the one edge we had decided to ignore could have made the
graph connected. The same can be said for questions of separability, planarity, and other
properties [15, 16].

There are two natural ways of scanning or searching the edges of a graph as we move
from vertex to vertex: (i) once at a vertex v we scan all edges incident on v and then move
to an adjacent vertex w, then from w we scan all edges incident on w. This process is
continued till all the edges reachable from v are scanned. This method of fanning out from
a given vertex v and visiting all vertices reachable from v in order of their distances from
v (i.e. first visit all vertices at a distance one from v, then all vertices at distances two
from v, and so on) is referred to as the breadth-first search (BFS) of the graph. (ii) An
opposite approach would be, instead of scanning every edge incident on vertex v, we move
to an adjacent vertex w (a vertex not visited before) as soon as possible, leaving v with
possibly unexplored edges for the time being. In other words, we trace a path through the
graph going on to a new vertex whenever possible. This method of traversing the graph is
called the depth-first search (DFS). Breadth-first and depth-first searches are fundamental
methods of graph traversal that form the basis of many graph algorithms [7, 15, 16, 19]. The
details of these two methods follow.

4.4.1 Depth-First Search

Depth-first search on an undirected graph G = (V, E) explores the graph as follows. When
we are “visiting” a vertex v ∈ V , we follow one of the edges (v, w) incident on v. If the
vertex w has been previously visited, we return to v and choose another edge. If the vertex
w (at the other end of edge (v, w) from v) has not been previously visited, we visit it and
apply the process recursively to w. If all the edges incident on v have been thus traversed,
we go back along the edge (u, v) that had first led to the current vertex v and continue
exploring the edges incident on u. We are finished when we try to back up from the vertex
at which the exploration began.

as an adjacency lists. We start with a vertex a. From a we traverse the first edge that
we encounter, which is (a, b). Since b is a vertex never visited before, we stay at b and
traverse the first untraversed edge encountered at b, which is (b, c). Now at vertex c, the
first untraversed edge that we find is (c, a). We traverse (c, a) and find that a has been
previously visited. So we return to c, marking the edge (c, a) in some way (as a dashed
line in Figure 4.8(c)) to distinguish it from edges like (b, c), which lead to new vertices and
shown as the thick lines. Back at vertex c, we look for another untraversed edge and traverse
the first one that we encounter, which is (c, d). Once again, since d is a new vertex, we stay
at d and look for an untraversed edge. And so on. The numbers next to the vertices in
Figure 4.8(c) show the order in which they were visited; and the numbers next to the edges
show the order in which they were traversed.

© 2005 by Chapman & Hall/CRC

Figure 4.8 illustrates how depth-first search examines an undirected graph G represented
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(a) (b)

(c)

FIGURE 4.8: A graph (a); its adjacency lists (b); and its depth-first traversal (c). The
numbers are the order in which vertices were visited and edges traversed. Edges whose
traversal led to new vertices are shown with thick lines, and edges that led to vertices that
were already visited are shown with dashed lines.

DepthFirstSearch(G)
for each vertex x ∈ V do

num[x] ← 0
end for
TreeEdges ← 0
i ← 0
for each vertex x ∈ V do

if num[x] = 0 then
DFS-Visit(x)

end if
end for

© 2005 by Chapman & Hall/CRC
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DFS-Visit(v)
i ← i + 1
num[v] ← i
for each vertex w ∈ Adj[v] do

if num[w] = 0 then {// w is new vertex //}
TreeEdges ← TreeEdges ∪ (v, w) {// (v, w) is a tree edge //}
DFS-Visit(w)

end if
end for

FIGURE 4.9: Algorithm for depth-first search on an undirected graph G.

Depth-first search performed on a connected undirected graph G = (V, E), partitions the
edge set into two types: (i) Those that led to new vertices during the search constitute the
branches of a spanning tree of G and (ii) the remaining edges in E are called back edges
because their traversal led to an already visited vertex from which we backed down to the
current vertex.

A recursive depth-first search algorithm is given in Figure 4.9. Initially, every vertex x is
marked unvisited by setting num[x] to 0. Note that in the algorithm shown in Figure 4.9,
only the tree edges are kept track of. The time complexity of the depth-first search algorithm
is O(m + n), provided the input is in the form of an adjacency matrix.

4.4.2 Breadth-First Search

In breadth-first search we start exploring from a specified vertex s and mark it “visited”.
All other vertices of the given undirected graph G are marked as “unvisited” by setting
num[] = 0. Then we visit all vertices adjacent to s (i.e., in the adjacency list of s). Next,
we visit all unvisited vertices adjacent to the first vertex in the adjacency list of s. Unlike
the depth-first search, in breadth-first search we explore (fan out) from vertices in order
in which they themselves were visited. To implement this method of search, we maintain
a queue (Q) of visited vertices. As we visit a new vertex for the first time, we place it in
(i.e., at the back of) the queue. We take a vertex v from front of the queue and traverse
all untraversed edges incident at v—adding to the list of tree edges those edges that lead
to unvisited vertices from v ignoring the rest. Once a vertex v has been taken out of the
queue, all the neighbors of v are visited and v is completely explored.

Thus, during the execution of a breadth-first search we have three types of vertices: (i)
unvisited, those that have never been in the queue; (ii) completely explored, those that
have been in the queue but are not now in the queue; and (iii) visited but not completely
explored, i.e., those that are currently in the queue.

Since every vertex (reachable from the start vertex s) enters and exits the queue exactly
once and every edge in the adjacency list of a vertex is traversed exactly once, the time
complexity of the breadth-first search is O(n + m).

© 2005 by Chapman & Hall/CRC
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BreadthFirstSearch(G, s)
for each vertex x ∈ V − {s} do

visited[x] ← 0 {// all vertices unvisited except s //}
end for
TreeEdges ← null
Q ← φ {// queue of vertices is initially empty //}
visited[s] ← 1 {// mark s as visited //}
enqueue(Q, s) {// place s in the queue //}
while Q �= φ do {// queue is not empty //}

v ← dequeue(Q)
for each w ∈ Adj[v] do

if visited[w] = 0 then {// w is a new vertex //}
visited[w] ← 1
TreeEdges ← TreeEdges ∪ {(v, w)}
enqueue(Q, w)

end if
end for

end while

FIGURE 4.10: Algorithm for breadth-first search on an undirected graph G from vertex s.

An algorithm for performing a breadth-first search on an undirected connected graph G
from a specified vertex s is given in Figure 4.10. It produces a breadth-first tree in G rooted
at vertex s. For example, the spanning tree produced by BFS conducted on the graph in

show the order in which the vertices were visited during the BFS.

FIGURE 4.11:
starting from vertex a. The numbers show the order in which vertices were visited.

© 2005 by Chapman & Hall/CRC

Figure 4.8 starting at vertex a, is shown in Figure 4.11. The numbers next to the vertices

Spanning tree produced by breadth-first search on graph in Figure 4.8
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4.5 Simple Applications of DFS and BFS

In the preceding section we discussed two basic but powerful and efficient techniques for
systematically searching a graph such that every edge is traversed exactly once and every
vertex is visited once. With proper modifications and embellishments these search tech-
niques can be used to solve a variety of graph problems. Some of the simple ones are
discussed in this section.

Cycle Detection: The existence of a back edge (i.e., a nontree edge) during a depth-
first search indicates the existence of cycle. To test this condition we just add an else clause
to the if That is, if
num[w] �= 0, (v, w) is a back edge, which forms a cycle with tree edges in the path from w
to v.

Spanning Tree: If the input graph G for the depth-first (or breadth-first) algorithm
is connected, the set TreeEdges at the termination of the algorithm in Figure 4.9 (or in

Connected Components: If, on the other hand, the input graph G = (V, E) is dis-
connected we can use depth-first search to identify each of its connected components by
assigning a unique component number compnum[v] to every vertex belonging to one com-
ponent. The pseudocode of such an algorithm is given below (Figure 4.12)

for each vertex v ∈ V do
compnum[v] ← 0

end for
for each vertex v ∈ V do

if compnum[v] = 0 then
c ← c + 1
COMP(v)

end if
end for

COMP(x)
compnum[x] ← c
for each w ∈ Adj[x] do

if compnum[w] = 0 then
COMP(w)

end if
end for

FIGURE 4.12: Depth-first search algorithm for finding connected components of a graph.

4.5.1 Depth-First Search on a Digraph

Searching a digraph is somewhat more involved because the direction of the edges is an
additional feature that must be taken into account. In fact, a depth-first search on a
digraph produces four kinds of edges (rather than just two types for undirected graphs):

© 2005 by Chapman & Hall/CRC

num[w] = 0 statement in DFS-Visit(v) procedure in Figure 4.9.

Figure 4.10, for breadth-first) produces a spanning tree of G.
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(i) Tree edges—lead to an unvisited vertex (ii) Back edges—lead to an (visited) ancestor
vertex in the tree (iii) Down-edges (also called forward edges) lead to a (visited) descendant
vertex in the tree, and (iv) Cross edges, lead to a visited vertex, which is neither ancestor
nor descendant in the tree [3, 15, 16, 18, 19].

4.5.2 Topological Sorting

The simplest use of the depth-first search technique on digraphs is to determine a labeling
of the vertices of an acyclic digraph G = (V, E) with integers 1, 2, . . . , |V |, such that if there
is a directed edge from vertex i to vertex j, then i < j; such a labeling is called topological
sort of the vertices of G. For example, the vertices of the digraph in Figure 4.13(a) are
topologically sorted but those of Figure 4.13(b) are not. Topological sorting can be viewed
as the process of finding a linear order in which a given partial order can be embedded. It
is not difficult to show that it is possible to topologically sort the vertices of a digraph if
and only if it is acyclic. Topological sorting is useful in the analysis of activity networks
where a large, complex project is represented as a digraph in which the vertices correspond
to the goals in the project and the edges correspond to the activities. The topological sort
gives an order in which the goals can be achieved [1, 9, 18].

(a) Topologically sorted. (b) Not topologically sorted.

FIGURE 4.13: Acyclic digraphs.

Topological sorting begins by finding a vertex of G = (V, E) with no outgoing edge (such a
vertex must exist if G is acyclic) and assigning this vertex the highest number—namely, |V |.
This vertex is then deleted from G, along with all its incoming edges. Since the remaining
digraph is also acyclic, we can repeat the process and assign the next highest number,
namely |V | − 1, to a vertex with no outgoing edges, and so on. To keep the algorithm
O(|V | + |E|), we must avoid searching the modified digraph for a vertex with no outgoing
edges.

We do so by performing a single depth-first search on the given acyclic digraph G. In
addition to the usual array num, we will need another array, label, of size |V | for recording
the topologically sorted vertex labels. That is, if there is an edge (u, v) in G, then label[u] <
label[v].
Use the acyclic digraph in Figure 4.13(a) with vertex set V = {a, b, c, d, e, f, g} as the input

© 2005 by Chapman & Hall/CRC

The complete search and labeling procedure TOPSORT is given in Figure 4.14.
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to the topological sort algorithm in Figure 4.14; and verify that the vertices get relabeled 1
to 7, as shown next to the original names—in a correct topological order.

Topological-Sort(G)
for each vertex x ∈ V do

num[x] ← 0
label[x] ← 0

end for
j ← n + 1
i ← 0
for each vertex x ∈ V do

if num[x] = 0 then {// x has no labeled ancestor //}
TOPSORT(x)

end if
end for

TOPSORT(v)
i ← i + 1
num[v] ← i
for each w ∈ Adj[v] do {// examine all descendants of w //}

if num[w] = 0 then
TOPSORT(w)

else if label[w] = 0 then
Error {// cycle detected //}

end if
j ← j − 1
label[v] ← j

end for

FIGURE 4.14: Algorithm for topological sorting.

4.6 Minimum Spanning Tree

How to connect a given set of points with lowest cost is a frequently-encountered problem,
which can be modeled as the problem of finding a minimum-weight spanning tree T in a
weighted, connected, undirected graph G = (V, E). Methods for finding such a spanning
tree, called a minimum spanning tree (MST), have been investigated in numerous studies
and have a long history [8]. In this section we will discuss the bare essentials of the two
commonly used MST algorithms—Kruskal’s and Prim’s—and briefly mention a third one.

4.6.1 Kruskal’s MST Algorithm

An algorithm due to J. B. Kruskal, which employs the smallest-edge-first strategy, works
as follows: First we sort all the edges in the given network by weight, in nondecreasing
order. Then one by one the edges are examined in order, smallest to the largest. If an
edge ei, upon examination, is found to form a cycle (when added to edges already selected)
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it is discarded. Otherwise, ei is selected to be included in the minimum spanning tree T .
The construction stops when the required n − 1 edges have been selected or when all m
edges have been examined. If the given network is disconnected, we would get a minimum
spanning forest (instead of tree). More formally, Kruskal’s method may be stated as follows:

T ← φ
while |T | < (n − 1) and E �= φ do

e ← smallest edge in E
E ← E − {e}
if T ∪ {e} has no cycle then

T ← T ∪ {e}
end if

end while
if |T | < (n − 1) then

write ‘network disconnected’
end if

Although the algorithm just outlined is simple enough, we do need to work out some
implementation details and select an appropriate data structure for achieving an efficient
execution.

There are two crucial implementational details that we must consider in this algorithm.
If we initially sort all m edges in the given network, we may be doing a lot of unnecessary
work. All we really need is to be able to to determine the next smallest edge in the network
at each iteration. Therefore, in practice, the edges are only partially sorted and kept as a
heap with smallest edge at the root of a min heap. In a graph with m edges, the initial
construction of the heap would require O(m) computational steps; and the next smallest
edge from a heap can be obtained in O(log m) steps. With this improvement, the sorting cost
is O(m + p logm), where p is the number of edges examined before an MST is constructed.
Typically, p is much smaller than m.

The second crucial detail is how to maintain the edges selected (to be included in the
MST) so far, such that the next edge to be examined can be efficiently tested for a cycle
formation.

As edges are examined and included in T , a forest of disconnected trees (i.e., subtrees
of the final spanning tree) is produced. The edge e being examined will form a cycle if
and only if both its end vertices belong to the same subtree in T . Thus to ensure that the
edge currently being examined does not form a cycle, it is sufficient to check if it connects
two different subtrees in T . An efficient way to accomplish this is to group the n vertices
of the given network into disjoint subsets defined by the subtrees (formed by the edges
included in T so far). Thus if we maintain the partially constructed MST by means of
subsets of vertices, we can add a new edge by forming the UNION of two relevant subsets,
and we can check for cycle formation by FINDing if the two end vertices of the edge, being
examined, are in the same subset. These subsets can themselves be kept as rooted trees.
The root is an element of the subset and is used as a name to identify that subset. The
FIND subprocedure is called twice—once for each end vertex of edge e—to determine the
sets to which the two end vertices belong. If they are different, the UNION subprocedure
will merge the two subsets. (If they are the same subset, edge e will be discarded.)

The subsets, kept as rooted trees, are implemented by keeping an array of parent pointers
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for each of the n elements. Parent of a root, of course, is null. (In fact, it is useful to assign
parent[root] = -number of vertices in the tree.) While taking the UNION of two subsets,
we merge the smaller subset into the larger one by pointing the parent pointer in the root
of the smaller subset to the root of the larger subset. Some of these details are shown in
Figure 4.15. Note that r1 and r2 are the roots identifying the sets to which vertices u and
v belong.

INITIALIZATION:
set parent array to -1 {// n vertices from singleton sets //}
form initial heap of m edges
ecount ← 0 {// number of edges examined so far //}
tcount ← 0 {// number of edges in T so far //}
T ← φ

ITERATION:
while tcount < (n − 1) and ecount < m do

e ← edge(u, v) from top of heap
ecount ← ecount + 1
remove e from heap
restore heap
r1 ← FIND(u)
r2 ← FIND(v)
if r1 �= r2 then

T ← T ∪ {e}
tcount ← tcount + 1
UNION(r1, r2)

end if
end while
if tcount < (n − 1) then

write ‘network disconnected’
end if

FIGURE 4.15: Kruskal’s minimum spanning tree algorithm.

which edges are included one by one to form the MST are (3, 5), (4, 6), (4, 5), (4, 2), (6, 7), (3, 1).
After the first five smallest edges are included in the MST, the 6th and 7th and 8th smallest
edges are rejected. Then the 9th smallest edge (1, 3) completes the MST and the last two
edges are ignored.

4.6.2 Prim’s MST Algorithm

A second algorithm, discovered independently by several people (Jarnik in 1936, Prim in
1957, Dijkstra in 1959) employs the “nearest neighbor” strategy and is commonly referred
to as Prim’s algorithm. In this method one starts with an arbitrary vertex s and joins it
to its nearest neighbor, say y. That is, of all edges incident on vertex s, edge (s, y), with
the smallest weight, is made part of the MST. Next, of all the edges incident on s or y we
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When algorithm in Figure 4.15 is applied to the weighted graph in Figure 4.16, the order in
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choose one with minimum weight that leads to some third vertex, and make this edge part
of the MST. We continue this process of “reaching out” from the partially constructed tree
(so far) and bringing in the “nearest neighbor” until all vertices reachable from s have been
incorporated into the tree.

FIGURE 4.16: A connected weighted graph for MST algorithm.

As an example, let us use this method to find the minimum spanning tree of the weighted
graph given in Figure 4.16. Suppose that we start at vertex 1. The nearest neighbor of
vertex 1 is vertex 3. Therefore, edge (1, 3) becomes part of the MST. Next, of all the edges
incident on vertices 1 and 3 (and not included in the MST so far) we select the smallest,
which is edge (3, 5) with weight 14. Now the partially constructed tree consists of two edges
(1, 3) and (3, 5). Among all edges incident at vertices 1,3, and 5, edge (5, 4) is the smallest,
and is therefore included in the MST. The situation at this point is shown in Figure 4.17.
Clearly, (4, 6), with weight 18 is the next edge to be included. Finally, edges (4, 2) and (6, 7)
will complete the desired MST.

FIGURE 4.17: Partially constructed MST for the network of Figure 4.16.
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The primary computational task in this algorithm is that of finding the next edge to be
included into the MST in each iteration. For each efficient execution of this task we will
maintain an array near[u] for each vertex u not yet in the tree (i.e., u ∈ V − VT ). near[u]
is that vertex in VT which is closest to u. (Note that V is the set of all vertices in the
network and VT is the subset of V included in MST thus far.) Initially, we set near[s] ← 0
to indicate that s is in the tree, and for every other vertex v, near[v] ← s.

For convenience, we will maintain another array dist[u] of the actual distance (i.e., edge
weight) to that vertex in VT which is closest to u. In order to determine which vertex
is to be added to the set VT next, we compare all nonzero values in dist array and pick
the smallest. Thus n − i comparisons are sufficient to identify the ith vertex to be added.
Initially, since s is the only vertex in VT , dist[u] is set to wsu. As the algorithm proceeds,

A formal description of the nearest-neighbor algorithm is given in Figure 4.18. It is as-
sumed that the input is given in the form of an n×n weight matrix W (in which nonexistent
edges have ∞ weights). Set V = {1, 2, . . . , n} is the set of vertices of the graph. VT and ET

are the sets of vertices and edges of the partially formed (minimum spanning) tree. Vertex
set VT is identified by zero entries in array near.

INITIALIZATION:
choose starting vertex s arbitrarily
for every vertex i other than s do

near[i] ← s
dist[i] ← wsi

end for
VT ← {s} {// set of vertices in MST so far //}
ET ← φ {// set of edges in MST so far //}

ITERATION:
while |VT | < n do

u ← vertex in (V − VT ) with smallest value of dist(u)
if dist[u] ≥ ∞ then

write ‘graph disconnected’ and exit
end if
ET ← ET ∪ {(u, near[u])}
VT ← VT ∪ {u}
for x ∈ (V − VT ) do

if wux < dist[x] then
dist[x] ← wux

near[x] ← u
end if

end for
end while

FIGURE 4.18: Prim’s minimum spanning tree algorithm.
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these two arrays are updated in each iteration (see Figure 4.17 for an illustration).
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4.6.3 Boruvka’s MST Algorithm

There is yet a third method for computing a minimum spanning tree, which was first
proposed by O. Boruvka in 1926 (but rediscovered by G. Chouqet in 1938 and G. Sollin in
1961). It works as follows: First, the smallest edge incident on each vertex is found; these
edges form part of the minimum spanning tree. There are at least �n/2� such edges. The
connected components formed by these edges are collapsed into “supernodes”. (There are
no more than �n/2� such vertices at this point.) The process is repeated on “supernodes”
and then on the resulting “supersupernodes,” and so on, until only a single vertex remains.
This will require at most �log2 n� steps, because at each step the number of vertices is
reduced at least by a factor of 2. Because of its inherent parallelism the nearest-neighbor-
from-each-vertex approach is particularly appealing for parallel implementations.

These three “greedy” algorithms and their variations have been implemented with differ-
ent data structures and their relative performance—both theoretical as well as empirical—
have been studied widely. The results of some of these studies can be found in [2, 13, 14, 16].

4.6.4 Constrained MST

In many applications, the minimum spanning tree is required to satisfy an additional con-
straint, such as (i) the degree of each vertex in the MST should be equal to or less than a
specified value; or (ii) the diameter of the MST should not exceed a specified value; or (iii)
the MST must have at least a specified number of leaves (vertices of degree 1 in a tree); and
the like. The problem of computing such a constrained minimum spanning tree is usually
NP-complete. For a discussion of various constrained MST problems and some heuristics

4.7 Shortest Paths

In the preceding section we dealt with the problem of connecting a set of points with
smallest cost. Another commonly encountered and somewhat related problem is that of
finding the lowest-cost path (called shortest path) between a given pair of points. There
are many types of shortest-path problems. For example, determining the shortest path
(i.e., the most economical path or fastest path, or minimum-fuel-consumption path) from
one specified vertex to another specified vertex; or shortest paths from a specified vertex
to all other vertices; or perhaps shortest path between all pairs of vertices. Sometimes,
one wishes to find a shortest path from one given vertex to another given vertex that
passes through certain specified intermediate vertices. In some applications, one requires
not only the shortest but also the second and third shortest paths. Thus, the shortest-path
problems constitute a large class of problems; particularly if we generalize it to include
related problems, such as the longest-path problems, the most-reliable-path problems, the
largest-capacity-path problems, and various routing problems. Therefore, the number of
papers, books, reports, dissertations, and surveys dealing with the subject of shortest paths
runs into hundreds [5].

Here we will discuss two very basic and important shortest-path problems: (i) how to
determine the shortest distance (and a shortest path) from a specified vertex s to another
specified vertex t, and (ii) how to determine shortest distances (and paths) from every
vertex to every other vertex in the network. Several other problems can be solved using
these two basic algorithms.
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solving them see [6].
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4.7.1 Single-Source Shortest Paths, Nonnegative Weights

Let us first consider a classic algorithm due to Dijkstra for finding a shortest path (and
its weight) from a specified vertex s (source or origin) to another specified vertex t (target
or sink) in a network G in which all edge weights are nonnegative. The basic idea behind
Dijkstra’s algorithm is to fan out from s and proceed toward t (following the directed edges),
labeling the vertices with their distances from s obtained so far. The label of a vertex u is
made permanent once we know that it represents the shortest possible distance from s (to
u). All vertices not permanently labeled have temporary labels.

We start by giving a permanent label 0 to source vertex s, because zero is the distance
of s from itself. All other vertices get labeled ∞, temporarily, because they have not been
reached yet. Then we label each immediate successor v of source s, with temporary labels
equal to the weight of the edge (s, v). Clearly, the vertex, say x, with smallest temporary
label (among all its immediate successors) is the vertex closest to s. Since all edges have
nonnegative weights, there can be no shorter path from s to x. Therefore, we make the
label of x permanent. Next, we find all immediate successors of vertex x, and shorten their
temporary labels if the path from s to any of them is shorter by going through x (than it
was without going through x). Now, from among all temporarily labeled vertices we pick
the one with the smallest label, say vertex y, and make its label permanent. This vertex
y is the second closest vertex from s. Thus, at each iteration, we reduce the values of
temporary labels whenever possible (by selecting a shorter path through the most recent
permanently labeled vertex), then select the vertex with the smallest temporary label and
make it permanent. We continue in this fashion until the target vertex t gets permanently
labeled. In order to distinguish the permanently labeled vertices from the temporarily
labeled ones, we will keep a Boolean array final of order n. When the ith vertex becomes
permanently labeled, the ith element of this array changes from false to true. Another
array, dist, of order n will be used to store labels of vertices. A variable recent will be used
to keep track of most recent vertex to be permanently labeled.

Assuming that the network is given in the form of a weight matrix W = [wij ], with ∞
weights for nonexistent edges, and vertices s and t are specified, this algorithm (which is
called Dijkstra’s shortest-path or the label-setting algorithm) may be described as follows

INITIALIZATION:
for all v ∈ V do

dist[v] ← ∞
final[v] ← false
pred[v] ← −1

end for
dist[s] ← 0
final[s] ← true
recent ← s
{// vertex s is permanently labeled with 0. All other vertices are temporarily labeled
with ∞. Vertex s is the most recent vertex to be permanently labeled //}
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ITERATION:
while final[t] = false do

for every immediate successor v of recent do
if not final[v] then {// update temporary labels //}

newlabel ← dist[recent] + wrecent,v

if newlabel < dist[v] then
dist[v] ← newlabel
pred[v] ← recent
{// relabel v if there is a shorter path via vertex recent and make recent the
predecessor of v on the shortest path from s //}

end if
end if

end for
let y be the vertex with the smallest temporary label, which is �= ∞
final[y] ← true
recent ← y
{// y, the next closest vertex to s gets permanently labeled //}

end while

FIGURE 4.19: Dijkstra’s shortest-path algorithm.

4.7.2 Single-Source Shortest Paths, Arbitrary Weights

In Dijkstra’s shortest-path algorithm (Figure 4.19), it was assumed that all edge weights wij

were nonnegative numbers. If some of the edge weights are negative, Dijkstra’s algorithm
will not work. (Negative weights in a network may represent costs and positive ones, profit.)
The reason for the failure is that once the label of a vertex is made permanent, it cannot
be changed in future iterations. In order to handle a network that has both positive and
negative weights, we must ensure that no label is considered permanent until the program
halts. Such an algorithm (called a label-correcting method , in contrast to Dijkstra’s label-
setting method) is described as below.

Like Dijkstra’s algorithm, the label of the starting vertex s is set to zero and that of every
other vertex is set to ∞, a very large number. That is, the initialization consists of

dist(s) ← 0
for all v �= s do

dist(v) ← ∞
end for
In the iterative step, dist(v) is always updated to the currently known distance from s to

v, and the predecessor pred(v) of v is also updated to be the predecessor vertex of v on the
currently known shortest path from s to v. More compactly, the iteration may be expressed
as follows:

while ∃ an edge (u, v) such that dist(u) + wuv < dist(v) do
dist(v) ← dist(u) + wuv

pred(v) ← u
end while
Several implementations of this basic iterative step have been studied, experimented with,

and reported in the literature. One very efficient implementation, works as follows.
We maintain a queue of “vertices to be examined”. Initially, this queue, Q, contains only

the starting vertex s. The vertex u from the front of the queue is “examined” (as follows)
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and deleted. Examining u consists of considering all edges (u, v) going out of u. If the
length of the path to vertex v (from s) is reduced by going through u, that is,

if dist(u) + wuv < dist(v) then
dist(v) ← dist(u) + wuv {// dist(v) is reset to the smaller value //}
pred(v) ← u

end if
Moreover, this vertex v is added to the queue (if it is not already in the queue) as a

vertex to be examined later. Note that v enters the queue only if dist(v) is decremented as
above and if v is currently not in the queue. Observe that unlike in Dijkstra’s method (the
label-setting method) a vertex may enter (and leave) the queue several times—each time
a shorter path is discovered. It is easy to see that the label-correcting algorithm will not
terminate if the network has a cycle of negative weight.

4.7.3 All-Pairs Shortest Paths

We will now consider the problem of finding a shortest path between every pair of vertices
in the network. Clearly, in an n-vertex directed graph there are n(n − 1) such paths—one
for each ordered pair of distinct vertices—and n(n − 1)/2 paths in an undirected graph.
One could, of course, solve this problem by repeated application of Dijkstra’s algorithm,
once for each vertex in the network taken as the source vertex s. We will instead consider a
different algorithm for finding shortest paths between all pairs of vertices, which is known
as Warshall-Floyd algorithm. It requires computation time proportional to n3, and allows
some of the edges to have negative weights, as long as no cycles of net negative weight exist.

The algorithm works by inserting one or more vertices into paths, whenever it is advanta-
geous to do so. Starting with n×n weight matrix W = [wij ] of direct distances between the
vertices of the given network G, we construct a sequence of n matrices W (1), W (2), . . . , W (n).
Matrix W (1), 1 ≤ l ≤ n, may be thought of as the matrix whose (i, j)th entry w

(l)
ij gives

the length of the shortest path among all paths from i to j with vertices 1, 2, . . . , l allowed
as intermediate vertices. Matrix W (l) = w

(l)
ij is constructed as follows:

w
(0)
ij = wij

w
(l)
ij = min{w(l−1)

ij , w
(l−1)
il + w

(l−1)
lj } for l = 1, 2, . . . , n (4.1)

In other words, in iteration 1, vertex 1 is inserted in the path from vertex i to vertex j if
wij > wi1 + w1j . In iteration 2, vertex 2 can be inserted, and so on.

following replacements occur:

Iteration 1 : w
(0)
23 is replaced by (w(0)

21 + w
(0)
13)

Iteration 2 : w
(2)
24 is replaced by (w(2)

23 + w
(2)
34)

Once the shortest distance is obtained in w
(3)
23, the value of this entry will not be altered in

subsequent operations.
We assume as usual that the weight of a nonexistent edge is ∞, that x+∞ = ∞, and that

min{x,∞} = x for all x. It can easily be seen that all distance matrices W (l) calculated
from (4.1) can be overwritten on W itself. The algorithm may be stated as follows:
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For example, in Figure 4.6 the shortest path from vertex 2 to 4 is 2–1–3–4; and the
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for l ← 1 to n do
for i ← 1 to n do

if wil �= ∞ then
for j ← 1 to n do

wij ← min{wij , wil + wlj}
end for

end if
end for

end for

FIGURE 4.20: All-pairs shortest distance algorithm.

If the network has no negative-weight cycle, the diagonal entries w
(n)
ii represent the length

of shortest cycles passing through vertex i. The off-diagonal entries w
(n)
ij are the shortest

distances. Notice that negative weight of an individual edge has no effect on this algorithm
as long as there is no cycle with a net negative weight.

Note that the algorithm in Figure 4.20 does not actually list the paths, it only produces
their costs or weights. Obtaining paths is slightly more involved than it was in algorithm in

from a path matrix P = [pij ] (also called optimal policy matrix ), in which pij is the second
to the last vertex along the shortest path from i to j—the last vertex being j. The path
matrix P is easily calculated by adding the following steps in Figure 4.20. Initially, we set

pij ← i, if wij �= ∞, and
pij ← 0, if wij = ∞.

In the lth iteration if vertex l is inserted between i and j; that is, if wil + wlj < wij , then
we set pij ← plj . At the termination of the execution, the shortest path (i, v1, v2, . . . , vq, j)
from i to j can be obtained from matrix P as follows:

vq = pij

vq−1 = pi,vq

vq−2 = pi,vq−1

...
i = pi,v1

The storage requirement is n2, no more than for storing the weight matrix itself. Since all
the intermediate matrices as well as the final distance matrix are overwritten on W itself.
Another n2 storage space would be required if we generated the path matrix P also. The
computation time for the algorithm in Figure 4.20 is clearly O(n3), regardless of the number
of edges in the network.
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Figure 4.19 where a predecessor array pred was sufficient. Here the paths can be constructed
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4.8 Eulerian and Hamiltonian Graphs

A path when generalized to include visiting a vertex more than once is called a trail. In
other words, a trail is a sequence of edges (v1, v2), (v2, v3),. . ., (vk−2, vk−1), (vk−1, vk) in
which all the vertices (v1, v2, . . . , vk) may not be distinct but all the edges are distinct.
Sometimes a trail is referred to as a (non-simple) path and path is referred to as a simple
path.
simple path because vertex a is visited twice.

If the first and the last vertex in a trail are the same, it is called a closed trail , otherwise
an open trail . An Eulerian trail in a graph G = (V, E) is one that includes every edge in E
(exactly once). A graph with a closed Eulerian trail is called a Eulerian graph. Equivalently,
in an Eulerian graph, G, starting from a vertex one can traverse every edge in G exactly
once and return to the starting vertex. According to a theorem proved by Euler in 1736,
(considered the beginning of graph theory), a connected graph is Eulerian if and only if the
degree of its every vertex is even.

Given a connected graph G it is easy to check if G is Eulerian. Finding an actual Eulerian
trail of G is more involved. An efficient algorithm for traversing the edges of G to obtain
an Euler trail was given by Fleury. The details can be found in [20].

A cycle in a graph G is said to be Hamiltonian if it passes through every vertex of
G. Many families of special graphs are known to be Hamiltonian, and a large number of
theorems have been proved that give sufficient conditions for a graph to be Hamiltonian.
However, the problem of determining if an arbitrary graph is Hamiltonian is NP-complete.

Graph theory, a branch of combinatorial mathematics, has been studied for over two
centuries. However, its applications and algorithmic aspects have made enormous advances
only in the past fifty years with the growth of computer technology and operations research.
Here we have discussed just a few of the better-known problems and algorithms. Additional
material is available in the references provided. In particular, for further exploration the
Stanford GraphBase [10], the LEDA [12], and the Graph Boost Library [17] provide valu-
able and interesting platforms with collection of graph-processing programs and benchmark
databases.
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