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5.1 Introduction

A single-ended priority queue (or simply, a priority queue) is a collection of elements in
which each element has a priority. There are two varieties of priority queues—max and min.
The primary operations supported by a max (min) priority queue are (a) find the element
with maximum (minimum) priority, (b) insert an element, and (c) delete the element whose
priority is maximum (minimum). However, many authors consider additional operations
such as (d) delete an arbitrary element (assuming we have a pointer to the element), (e)
change the priority of an arbitrary element (again assuming we have a pointer to this
element), (f) meld two max (min) priority queues (i.e., combine two max (min) priority
queues into one), and (g) initialize a priority queue with a nonzero number of elements.

Several data structures: e.g., heaps (Chapter 3), leftist trees [2, 5], Fibonacci heaps [7]
(Chapter 7), binomial heaps [1] (Chapter 7), skew heaps [11] (Chapter 6), and pairing heaps
[6] (Chapter 7) have been proposed for the representation of a priority queue. The different
data structures that have been proposed for the representation of a priority queue differ in
terms of the performance guarantees they provide. Some guarantee good performance on
a per operation basis while others do this only in the amortized sense. Max (min) heaps
permit one to delete the max (min) element and insert an arbitrary element into an n
element priority queue in O(logn) time per operation; a find max (min) takes O(1) time.
Additionally, a heap is an implicit data structure that has no storage overhead associated
with it. All other priority queue structures are pointer-based and so require additional
storage for the pointers.

Max (min) leftist trees also support the insert and delete max (min) operations in O(logn)
time per operation and the find max (min) operation in O(1) time. Additionally, they permit
us to meld pairs of priority queues in logarithmic time.

The remaining structures do not guarantee good complexity on a per operation basis.
They do, however, have good amortized complexity. Using Fibonacci heaps, binomial
queues, or skew heaps, find max (min), inserts and melds take O(1) time (actual and
amortized) and a delete max (min) takes O(logn) amortized time. When a pairing heap is

5-1

© 2005 by Chapman & Hall/CRC


http://www.a-pdf.com/?product-split-demo

5-2 Handbook of Data Structures and Applications

(a) A binary tree (b) Extended binary tree

(c) s values (d) w values

FIGURE 5.1: s and w values.

used, the amortized complexity is O(1) for find max (min) and insert (provided no decrease
key operations are performed) and O(logn) for delete max (min) operations [12]. Jones [8]
gives an empirical evaluation of many priority queue data structures.

In this chapter, we focus on the leftist tree data structure. Two varieties of leftist trees—
height-biased leftist trees [5] and weight-biased leftist trees [2] are described. Both varieties
of leftist trees are binary trees that are suitable for the representation of a single-ended
priority queue. When a max (min) leftist tree is used, the traditional single-ended priority
queue operations— find max (min) element, delete/remove max (min) element, and insert an
element—take, respectively, O(1), O(logn) and O(logn) time each, where n is the number
of elements in the priority queue. Additionally, an n-element max (min) leftist tree can be
initialized in O(n) time and two max (min) leftist trees that have a total of n elements may
be melded into a single max (min) leftist tree in O(logn) time.

5.2 Height-Biased Leftist Trees

5.2.1 Definition

Consider a binary tree in which a special node called an external node replaces each
empty subtree. The remaining nodes are called internal nodes. A binary tree with
external nodes added is called an extended binary tree. Figure 5.1(a) shows a binary
tree. Its corresponding extended binary tree is shown in Figure 5.1(b). The external nodes
appear as shaded boxes. These nodes have been labeled a through f for convenience.

Let s(z) be the length of a shortest path from node z to an external node in its sub-
tree. From the definition of s(x), it follows that if = is an external node, its s value is 0.
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Furthermore, if x is an internal node, its s value is

min{s(L),s(R)} +1

where L and R are, respectively, the left and right children of z. The s values for the nodes
of the extended binary tree of Figure 5.1(b) appear in Figure 5.1(c).

DEFINITION 5.1 [Crane [5]] A binary tree is a height-biased leftist tree (HBLT)
iff at every internal node, the s value of the left child is greater than or equal to the s value
of the right child.

The binary tree of Figure 5.1(a) is not an HBLT. To see this, consider the parent of the
external node a. The s value of its left child is 0, while that of its right is 1. All other
internal nodes satisfy the requirements of the HBLT definition. By swapping the left and
right subtrees of the parent of a, the binary tree of Figure 5.1(a) becomes an HBLT.

THEOREM 5.1 Let x be any internal node of an HBLT.

(a) The number of nodes in the subtree with root  is at least 25*) — 1.
(b) If the subtree with root x has m nodes, s(x) is at most logy(m + 1).

(c) The length, rightmost(x), of the right-most path from x to an external node (i.e.,
the path obtained by beginning at x and making a sequence of right-child moves)
is s(x).

Proof From the definition of s(z), it follows that there are no external nodes on the
s(z) — 1 levels immediately below node z (as otherwise the s value of z would be less). The
subtree with root x has exactly one node on the level at which x is, two on the next level,
four on the next, ---, and 2°(*)=1 nodes s(z) — 1 levels below z. The subtree may have
additional nodes at levels more than s(z) — 1 below . Hence the number of nodes in the

subtree z is at least foo)*l 2! = 25(=) 1. Part (b) follows from (a). Part (c) follows from

the definition of s and the fact that, in an HBLT, the s value of the left child of a node is
always greater than or equal to that of the right child.

DEFINITION 5.2 A max tree (min tree) is a tree in which the value in each node is
greater (less) than or equal to those in its children (if any).

Some max trees appear in Figure 5.2, and some min trees appear in Figure 5.3. Although
these examples are all binary trees, it is not necessary for a max tree to be binary. Nodes
of a max or min tree may have an arbitrary number of children.

DEFINITION 5.3 A max HBLT is an HBLT that is also a max tree. A min HBLT
is an HBLT that is also a min tree.

The max trees of Figure 5.2 as well as the min trees of Figure 5.3 are also HBLTS;
therefore, the trees of Figure 5.2 are max HBLTSs, and those of Figure 5.3 are min HBLTs.
A max priority queue may be represented as a max HBLT, and a min priority queue may
be represented as a min HBLT.
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FIGURE 5.3: Some min trees.

5.2.2 Insertion into a Max HBLT

The insertion operation for max HBLTs may be performed by using the max HBLT meld
operation, which combines two max HBLTSs into a single max HBLT. Suppose we are to
insert an element x into the max HBLT H. If we create a max HBLT with the single
element x and then meld this max HBLT and H, the resulting max HBLT will include all
elements in H as well as the element x. Hence an insertion may be performed by creating
a new max HBLT with just the element that is to be inserted and then melding this max
HBLT and the original.

5.2.3 Deletion of Max Element from a Max HBLT

The max element is in the root. If the root is deleted, two max HBLTSs, the left and right
subtrees of the root, remain. By melding together these two max HBLTSs, we obtain a max
HBLT that contains all elements in the original max HBLT other than the deleted max
element. So the delete max operation may be performed by deleting the root and then
melding its two subtrees.

5.2.4 Melding Two Max HBLTSs

Since the length of the right-most path of an HBLT with n elements is O(logn), a meld
algorithm that traverses only the right-most paths of the HBLT's being melded, spending
O(1) time at each node on these two paths, will have complexity logarithmic in the number
of elements in the resulting HBLT. With this observation in mind, we develop a meld
algorithm that begins at the roots of the two HBLTs and makes right-child moves only.
The meld strategy is best described using recursion. Let A and B be the two max HBLT's
that are to be melded. If one is empty, then we may use the other as the result. So assume
that neither is empty. To perform the meld, we compare the elements in the two roots. The
root with the larger element becomes the root of the melded HBLT. Ties may be broken
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arbitrarily. Suppose that A has the larger root and that its left subtree is L. Let C' be the
max HBLT that results from melding the right subtree of A and the max HBLT B. The
result of melding A and B is the max HBLT that has A as its root and L and C as its
subtrees. If the s value of L is smaller than that of C', then C'is the left subtree. Otherwise,
L is.

Example 5.1

Consider the two max HBLTs of Figure 5.4(a). The s value of a node is shown outside the
node, while the element value is shown inside. When drawing two max HBLTs that are to
be melded, we will always draw the one with larger root value on the left. Ties are broken
arbitrarily. Because of this convention, the root of the left HBLT always becomes the root
of the final HBLT. Also, we will shade the nodes of the HBLT on the right.

Since the right subtree of 9 is empty, the result of melding this subtree of 9 and the tree
with root 7 is just the tree with root 7. We make the tree with root 7 the right subtree of
9 temporarily to get the max tree of Figure 5.4(b). Since the s value of the left subtree of
9 is 0 while that of its right subtree is 1, the left and right subtrees are swapped to get the
max HBLT of Figure 5.4(c).

Next consider melding the two max HBLTSs of Figure 5.4(d). The root of the left subtree
becomes the root of the result. When the right subtree of 10 is melded with the HBLT with
root 7, the result is just this latter HBLT. If this HBLT is made the right subtree of 10, we
get the max tree of Figure 5.4(e). Comparing the s values of the left and right children of
10, we see that a swap is not necessary.

Now consider melding the two max HBLTs of Figure 5.4(f). The root of the left subtree is
the root of the result. We proceed to meld the right subtree of 18 and the max HBLT with
root 10. The two max HBLTSs being melded are the same as those melded in Figure 5.4(d).
The resultant max HBLT (Figure 5.4(e)) becomes the right subtree of 18, and the max tree
of Figure 5.4(g) results. Comparing the s values of the left and right subtrees of 18, we see
that these subtrees must be swapped. Swapping results in the max HBLT of Figure 5.4(h).

As a final example, consider melding the two max HBLTs of Figure 5.4(i). The root of
the left max HBLT becomes the root of the result. We proceed to meld the right subtree of
40 and the max HBLT with root 18. These max HBLTs were melded in Figure 5.4(f). The
resultant max HBLT (Figure 5.4(g)) becomes the right subtree of 40. Since the left subtree
of 40 has a smaller s value than the right has, the two subtrees are swapped to get the max
HBLT of Figure 5.4(k). Notice that when melding the max HBLT of Figure 5.4(i), we first
move to the right child of 40, then to the right child of 18, and finally to the right child of
10. All moves follow the right-most paths of the initial max HBLTs.

5.2.5 Initialization

It takes O(nlogn) time to initialize a max HBLT with n elements by inserting these ele-
ments into an initially empty max HBLT one at a time. To get a linear time initialization
algorithm, we begin by creating n max HBLTs with each containing one of the n elements.
These n max HBLTs are placed on a FIFO queue. Then max HBLTSs are deleted from
this queue in pairs, melded, and added to the end of the queue until only one max HBLT
remains.

Example 5.2

We wish to create a max HBLT with the five elements 7, 1, 9, 11, and 2. Five single-
element max HBLTSs are created and placed in a FIFO queue. The first two, 7 and 1,
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FIGURE 5.4: Melding max HBLTs.

are deleted from the queue and melded. The result (Figure 5.5(a)) is added to the queue.
Next the max HBLTs 9 and 11 are deleted from the queue and melded. The result appears
in Figure 5.5(b). This max HBLT is added to the queue. Now the max HBLT 2 and
that of Figure 5.5(a) are deleted from the queue and melded. The resulting max HBLT
(Figure 5.5(c)) is added to the queue. The next pair to be deleted from the queue consists
of the max HBLTSs of Figures Figure 5.5 (b) and (c). These HBLTs are melded to get the
max HBLT of Figure 5.5(d). This max HBLT is added to the queue. The queue now has
just one max HBLT, and we are done with the initialization.
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FIGURE 5.5: Initializing a max HBLT.

For the complexity analysis of of the initialization operation, assume, for simplicity, that
n is a power of 2. The first n/2 melds involve max HBLTs with one element each, the next
n/4 melds involve max HBLTs with two elements each; the next n/8 melds are with trees
that have four elements each; and so on. The time needed to meld two leftist trees with 2°
elements each is O(i + 1), and so the total time for the initialization is

i

O(n/2+ 2 (n/4) +35 (n/8) + ) = OnY o

) =0(n)

5.2.6 Deletion of Arbitrary Element from a Max HBLT

Although deleting an element other than the max (min) element is not a standard operation
for a max (min) priority queue, an efficient implementation of this operation is required when
one wishes to use the generic methods of Cho and Sahni [3] and Chong and Sahni [4] to
derive efficient mergeable double-ended priority queue data structures from efficient single-
ended priority queue data structures. From a max or min leftist tree, we may remove the
element in any specified node theNode in O(logn) time, making the leftist tree a suitable
base structure from which an efficient mergeable double-ended priority queue data structure
may be obtained [3,4].

To remove the element in the node theNode of a height-biased leftist tree, we must do
the following;:

1. Detach the subtree rooted at the Node from the tree and replace it with the meld
of the subtrees of theNode.

2. Update s values on the path from the Node to the root and swap subtrees on this
path as necessary to maintain the leftist tree property.

To update s on the path from theNode to the root, we need parent pointers in each node.
This upward updating pass stops as soon as we encounter a node whose s value does not
change. The changed s values (with the exception of possibly O(logn) values from moves
made at the beginning from right children) must form an ascending sequence (actually, each
must be one more than the preceding one). Since the maximum s value is O(log n) and since
all s values are positive integers, at most O(logn) nodes are encountered in the updating
pass. At each of these nodes, we spend O(1) time. Therefore, the overall complexity of
removing the element in node the Node is O(logn).
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5.3 Weight-Biased Leftist Trees

5.3.1 Definition

We arrive at another variety of leftist tree by considering the number of nodes in a subtree,
rather than the length of a shortest root to external node path. Define the weight w(x) of
node z to be the number of internal nodes in the subtree with root z. Notice that if x is an
external node, its weight is 0. If x is an internal node, its weight is 1 more than the sum
of the weights of its children. The weights of the nodes of the binary tree of Figure 5.1(a)
appear in Figure 5.1(d)

DEFINITION 5.4 [Cho and Sahni [2]] A binary tree is a weight-biased leftist tree
(WBLT) iff at every internal node the w value of the left child is greater than or equal
to the w value of the right child. A max (min) WBLT is a max (min) tree that is also a
WBLT.

Note that the binary tree of Figure 5.1(a) is not a WBLT. However, all three of the binary
trees of Figure 5.2 are WBLTs.

THEOREM 5.2 Let x be any internal node of a weight-biased leftist tree. The length,
rightmost(x), of the right-most path from x to an external node satisfies

rightmost(z) < logy(w(z) + 1).

Proof The proof is by induction on w(xz). When w(z) = 1, rightmost(z) = 1 and
log,(w(x) + 1) = log, 2 = 1. For the induction hypothesis, assume that rightmost(x) <
log, (w(x)+1) whenever w(zx) < n. Let RightChild(x) denote the right child of z (note that
this right child may be an external node). When w(z) = n, w(RightChild(z)) < (n—1)/2
and rightmost(x) = 1+rightmost(RightChild(x)) < 1+logy((n—1)/241) = 1+logy(n+
1) —1=1logy(n +1).

5.3.2 Max WBLT Operations

Insert, delete max, and initialization are analogous to the corresponding max HBLT oper-
ation. However, the meld operation can be done in a single top-to-bottom pass (recall that
the meld operation of an HBLT performs a top-to-bottom pass as the recursion unfolds and
then a bottom-to-top pass in which subtrees are possibly swapped and s-values updated). A
single-pass meld is possible for WBLTSs because we can determine the w values on the way
down and so, on the way down, we can update w-values and swap subtrees as necessary.
For HBLTSs, a node’s new s value cannot be determined on the way down the tree.

Since the meld operation of a WBLT may be implemented using a single top-to-bottom
pass, inserts and deletes also use a single top-to-bottom pass. Because of this, inserts and
deletes are faster, by a constant factor, in a WBLT than in an HBLT [2]. However, from a
WBLT, we cannot delete the element in an arbitrarily located node, theNode, in O(logn)
time. This is because theNode may have O(n) ancestors whose w value is to be updated.
So, WBLTS are not suitable for mergeable double-ended priority queue applications [3, 8].

C++ and Java codes for HBLTs and WBLTs may be obtained from [9] and [10], respec-
tively.
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