
6
Skew Heaps

C. Pandu Rangan
Indian Institute of Technology, Madras

6.1 Introduction . 6-1
6.2 Basics of Amortized Analysis . 6-2
6.3 Meldable Priority Queues and Skew Heaps 6-5

Meldable Priority Queue Operations • Amortized
Cost of Meld Operation

6.4 Bibliographic Remarks . 6-9

6.1 Introduction

Priority Queue is one of the most extensively studied Abstract Data Types (ADT) due to
its fundamental importance in the context of resource managing systems, such as operating
systems. Priority Queues work on finite subsets of a totally ordered universal set U . With-
out any loss of generality we assume that U is simply the set of all non-negative integers.
In its simplest form, a Priority Queue supports two operations, namely,

• insert(x, S) : update S by adding an arbitrary x ∈ U to S.
• delete-min(S) : update S by removing from S the minimum element of S.

We will assume for the sake of simplicity, all the items of S are distinct. Thus, we
assume that x �∈ S at the time of calling insert(x, S). This increases the cardinality of S,
denoted usually by |S|, by one. The well-known data structure Heaps, provide an elegant
and efficient implementation of Priority Queues. In the Heap based implementation, both
insert(x, S) and delete-min(S) take O(log n) time where n = |S|.

Several extensions for the basic Priority Queues were proposed and studied in response
to the needs arising in several applications. For example, if an operating system maintains
a set of jobs, say print requests, in a priority queue, then, always, the jobs with ‘high
priority’ are serviced irrespective of when the job was queued up. This might mean some
kind of ‘unfairness’ for low priority jobs queued up earlier. In order to straighten up the
situation, we may extend priority queue to support delete-max operation and arbitrarily mix
delete-min and delete-max operations to avoid any undue stagnation in the queue. Such
priority queues are called Double Ended Priority Queues. It is easy to see that Heap is
not an appropriate data structure for Double Ended Priority Queues. Several interesting
alternatives are available in the literature [1] [3] [4]. You may also refer Chapter 8 of this
handbook for a comprehensive discussion on these structures.

In another interesting extension, we consider adding an operation called melding. A meld
operation takes two disjoint sets, S1 and S2, and produces the set S = S1 ∪ S2. In terms
of an implementation, this requirement translates to building a data structure for S, given

6-1

© 2005 by Chapman & Hall/CRC

DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo

6-2 Handbook of Data Structures and Applications

the data structures of S1 and S2. A Priority Queue with this extension is called a Meldable
Priority Queue. Consider a scenario where an operating system maintains two different
priority queues for two printers and one of the printers is down with some problem during
operation. Meldable Priority Queues naturally model such a situation.

Again, maintaining the set items in Heaps results in very inefficient implementation of
Meldable Priority Queues. Specifically, designing a data structure with O(log n) bound
for each of the Meldable Priority Queue operations calls for more sophisticated ideas and
approaches. An interesting data structure called Leftist Trees, implements all the operations
of Meldable Priority Queues in O(log n) time. Leftist Trees are discussed in Chapter 5 of
this handbook.

The main objective behind the design of a data structure for an ADT is to implement
the ADT operations as efficiently as possible. Typically, efficiency of a structure is judged
by its worst-case performance. Thus, when designing a data structure, we seek to minimize
the worst case complexity of each operation. While this is a most desirable goal and has
been theoretically realized for a number of data structures for key ADTs, the data structures
optimizing worst-case costs of ADT operations are often very complex and pretty tedious to
implement. Hence, computer scientists were exploring alternative design criteria that would
result in simpler structures without losing much in terms of performance. In Chapter 13 of
this handbook, we show that incorporating randomness provides an attractive alternative
avenue for designers of the data structures. In this chapter we will explore yet another design
goal leading to simpler structural alternatives without any degrading in overall performance.

Since the data structures are used as basic building blocks for implementing algorithms,
a typical execution of an algorithm might consist of a sequence of operations using the data
structure over and again. In the worst case complexity based design, we seek to reduce
the cost of each operation as much as possible. While this leads to an overall reduction
in the cost for the sequence of operations, this poses some constraints on the designer of
data structure. We may relax the requirement that the cost of each operation be minimized
and perhaps design data structures that seek to minimize the total cost of any sequence of
operations. Thus, in this new kind of design goal, we will not be terribly concerned with
the cost of any individual operations, but worry about the total cost of any sequence of
operations. At first thinking, this might look like a formidable goal as we are attempting to
minimize the cost of an arbitrary mix of ADT operations and it may not even be entirely
clear how this design goal could lead to simpler data structures. Well, it is typical of a
novel and deep idea; at first attempt it may puzzle and bamboozle the learner and with
practice one tends to get a good intuitive grasp of the intricacies of the idea. This is one
of those ideas that requires some getting used to. In this chapter, we discuss about a data
structure called Skew heaps. For any sequence of a Meldable Priority Queue operations, its
total cost on Skew Heaps is asymptotically same as its total cost on Leftist Trees. However,
Skew Heaps are a bit simpler than Leftist Trees.

6.2 Basics of Amortized Analysis

We will now clarify the subtleties involved in the new design goal with an example. Consider
a typical implementation of Dictionary operations. The so called Balanced Binary Search
Tree structure (BBST) implements these operations in O(m log n) worst case bound. Thus,
the total cost of an arbitrary sequence of m dictionary operations, each performed on a
tree of size at most n, will be O(log n). Now we may turn around and ask: Is there a
data structure on which the cost of a sequence of m dictionary operations is O(m log n) but

© 2005 by Chapman & Hall/CRC

Skew Heaps 6-3

individual operations are not constrained to have O(log n) bound? Another more pertinent
question to our discussion - Is that structure simpler than BBST, at least in principle? An
affirmative answer to both the questions is provided by a data structure called Splay Trees.
Splay Tree is the theme of Chapter 12 of this handbook.

Consider for example a sequence of m dictionary operations S1, S2, ..., Sm, performed
using a BBST. Assume further that the size of the tree has never exceeded n during the
sequence of operations. It is also fairly reasonable to assume that we begin with an empty
tree and this would imply n ≤ m. Let the actual cost of executing Si be Ci. Then the total
cost of the sequence of operations is C1 +C2 + · · ·+Cm. Since each Ci is O(log n) we easily
conclude that the total cost is O(m log n). No big arithmetic is needed and the analysis is
easily finished. Now, assume that we execute the same sequence of m operations but employ
a Splay Tree in stead of a BBST. Assuming that ci is the actual cost of Si in a Splay Tree,
the total cost for executing the sequence of operation turns out to be c1 + c2 + . . . + cm.
This sum, however, is tricky to compute. This is because a wide range of values are possible
for each of ci and no upper bound other than the trivial bound of O(n) is available for ci.
Thus, a naive, worst case cost analysis would yield only a weak upper bound of O(nm)
whereas the actual bound is O(m log n). But how do we arrive at such improved estimates?

This is where we need yet another powerful tool called potential function.

The potential function is purely a conceptual entity and this is introduced only for the
sake of computing a sum of widely varying quantities in a convenient way. Suppose there
is a function f : D → R+ ∪ {0}, that maps a configuration of the data structure to a
non-negative real number. We shall refer to this function as potential function. Since the
data type as well as data structures are typically dynamic, an operation may change the
configuration of data structure and hence there may be change of potential value due to
this change of configuration. Referring back to our sequence of operations S1, S2, . . . , Sm,
let Di−1 denote the configuration of data structure before the executing the operation Si

and Di denote the configuration after the execution of Si. The potential difference due to
this operation is defined to be the quantity f(Di)− f(Di−1). Let ci denote the actual cost
of Si. We will now introduce yet another quantity, ai, defined by

ai = ci + f(Di) − f(Di−1).

What is the consequence of this definition?

Note that
m∑

i=1

ai =
m∑

i=1

ci + f(Dm) − f(D0).

Let us introduce one more reasonable assumption that f(D0) = f(φ) = 0. Since f(D) ≥ 0
for all non empty structures, we obtain,

∑
ai =

∑
ci + f(Dm) ≥

∑
ci

If we are able to choose cleverly a ‘good’ potential function so that ai’s have tight, uniform
bound, then we can evaluate the sum

∑
ai easily and this bounds the actual cost sum

∑
ci.

In other words, we circumvent the difficulties posed by wide variations in ci by introducing
new quantities ai which have uniform bounds. A very neat idea indeed! However, care must
be exercised while defining the potential function. A poor choice of potential function will
result in ais whose sum may be a trivial or useless bound for the sum of actual costs. In
fact, arriving at the right potential function is an ingenious task, as you will understand by
the end of this chapter or by reading the chapter on Splay Trees.

© 2005 by Chapman & Hall/CRC

6-4 Handbook of Data Structures and Applications

The description of the data structures such as Splay Trees will not look any different from
the description of a typical data structures - it comprises of a description of the organization
of the primitive data items and a bunch of routines implementing ADT operations. The key
difference is that the routines implementing the ADT operations will not be analyzed for
their individual worst case complexity. We will only be interested in the the cumulative effect
of these routines in an arbitrary sequence of operations. Analyzing the average potential
contribution of an operation in an arbitrary sequence of operations is called amortized
analysis. In other words, the routines implementing the ADT operations will be analyzed
for their amortized cost. Estimating the amortized cost of an operation is rather an intricate
task. The major difficulty is in accounting for the wide variations in the costs of an operation
performed at different points in an arbitrary sequence of operations. Although our design
goal is influenced by the costs of sequence of operations, defining the notion of amortized
cost of an operation in terms of the costs of sequences of operations leads one nowhere. As
noted before, using a potential function to off set the variations in the actual costs is a neat
way of handling the situation.

In the next definition we formalize the notion of amortized cost.

DEFINITION 6.1 [Amortized Cost] Let A be an ADT with basic operations O =
{O1, O2, · · · , Ok} and let D be a data structure implementing A. Let f be a potential
function defined on the configurations of the data structures to non-negative real number.
Assume further that f(Φ) = 0. Let D′ denote a configuration we obtain if we perform an
operation Ok on a configuration D and let c denote the actual cost of performing Ok on D.
Then, the amortized cost of Ok operating on D, denoted as a(Ok, D), is given by

a(Ok, D) = c + f(D′) − f(D)

If a(Ok, D) ≤ c′g(n) for all configuration D of size n, then we say that the amortized cost
of Ok is O(g(n)).

THEOREM 6.1 Let D be a data structure implementing an ADT and let s1, s2, · · · , sm

denote an arbitrary sequence of ADT operations on the data structure starting from an
empty structure D0. Let ci denote actual cost of the operation si and Di denote the con-
figuration obtained which si operated on Di−1, for 1 ≤ i ≤ m. Let ai denote the amortized
cost of si operating on Di−1 with respect to an arbitrary potential function. Then,

m∑

i=1

ci ≤
m∑

i=1

ai.

Proof Since ai is the amortized cost of si working on the configuration Di−1, we have

ai = a(si, Di−1) = ci + f(Di) − f(Di−1)

Therefore,

© 2005 by Chapman & Hall/CRC

Skew Heaps 6-5

m∑

i=1

ai =
m∑

i=1

ci + (f(Dm) − f(D0))

= f(Dm) +
m∑

i=1

ci (since f(D0) = 0)

≥
m∑

i=1

ci

REMARK 6.1 The potential function is common to the definition of amortized cost of
all the ADT operations. Since

∑m
i=1 ai ≥

∑m
i=1 ci holds good for any potential function, a

clever choice of the potential function will yield tight upper bound for the sum of actual
cost of a sequence of operations.

6.3 Meldable Priority Queues and Skew Heaps

DEFINITION 6.2 [Skew Heaps] A Skew Heap is simply a binary tree. Values are stored
in the structure, one per node, satisfying the heap-order property: A value stored at a node
is larger than the value stored at its parent, except for the root (as root has no parent).

REMARK 6.2 Throughout our discussion, we handle sets with distinct items. Thus a
set of n items is represented by a skew heap of n nodes. The minimum of the set is always
at the root. On any path starting from the root and descending towards a leaf, the values
are in increasing order.

6.3.1 Meldable Priority Queue Operations

Recall that a Meldable Priority queue supports three key operations: insert, delete-min and
meld. We will first describe the meld operation and then indicate how other two operations
can be performed in terms of the meld operation.

Let S1 and S2 be two sets and H1 and H2 be Skew Heaps storing S1 and S2 respectively.
Recall that S1 ∩ S2 = φ. The meld operation should produce a single Skew Heap storing
the values in S1 ∪ S2. The procedure meld (H1, H2) consists of two phases. In the first
phase, the two right most paths are merged to obtain a single right most path. This phase
is pretty much like the merging algorithm working on sorted sequences. In this phase, the
left subtrees of nodes in the right most paths are not disturbed. In the second phase, we
simply swap the children of every node on the merged path except for the lowest. This
completes the process of melding.

6.1 shows two Skew Heaps H1 2

after the completion of the first phase. Notice that right most paths are merged to obtain
the right most path of a single tree, keeping the respective left subtrees intact. The final

© 2005 by Chapman & Hall/CRC

Figure
Figures 6.1, 6.2 and 6.3 clarify the phases involved in the meld routine.

and H . In Figure 6.2 we have shown the scenario

6-6 Handbook of Data Structures and Applications

7

1035

1520

4025

5

33 9

43 23 11

H1
H2

FIGURE 6.1: Skew Heaps for meld operation.

5

33 7

43 9

10

11

15

35

23

20

40

25

FIGURE 6.2: Rightmost paths are merged. Left subtrees of nodes in the merged path are
intact.

6.3. Note that left and right child of every node on the
right most path of the tree in Figure 6.2 (except the lowest) are swapped to obtain the
final Skew Heap.

© 2005 by Chapman & Hall/CRC

Skew Heap is obtained in Figure

Skew Heaps 6-7

5

7

9

10

11

15

40

33

4335

23

20

25

FIGURE 6.3: Left and right children of nodes (5), (7), (9), (10), (11) of Figure 2 are
swapped. Notice that the children of (15) which is the lowest node in the merged path, are
not swapped.

It is easy to implement delete-min and insert in terms of the meld operation. Since
minimum is always found at the root, delete-min is done by simply removing the root and
melding its left subtree and right subtree. To insert an item x in a Skew Heap H1, we create
a Skew Heap H2 consisting of only one node containing x and then meld H1 and H2. From
the above discussion, it is clear that cost of meld essentially determines the cost of insert
and delete-min. In the next section, we analyze the amortized cost of meld operation.

6.3.2 Amortized Cost of Meld Operation

At this juncture we are left with the crucial task of identifying a suitable potential function.
Before proceeding further, perhaps one should try the implication of certain simple potential
functions and experiment with the resulting amortized cost. For example, you may try the
function f(D) = number of nodes in D(and discover how ineffective it is!).

We need some definitions to arrive at our potential function.

DEFINITION 6.3 For any node x in a binary tree, the weight of x, denoted wt(x), is
the number of descendants of x, including itself. A non-root node x is said to be heavy if
wt(x) > wt(parent(x))/2. A non-root node that is not heavy is called light. The root is
neither light nor heavy.

© 2005 by Chapman & Hall/CRC

6-8 Handbook of Data Structures and Applications

The next lemma is an easy consequence of the definition given above. All logarithms in
this section have base 2.

LEMMA 6.1 For any node, at most one of its children is heavy. Furthermore, any root
to leaf path in a n-node tree contains at most �log n
 light nodes.

DEFINITION 6.4 [Potential Function] A non-root is called right if it is the right child
of its parent; it is called left otherwise. The potential of a skew heap is the number of right
heavy node it contains. That is, f(H) = number of right heavy nodes in H . We extend the
definition of potential function to a collection of skew heaps as follows: f(H1, H2, · · · , Ht) =∑t

i=1 f(Hi).

Here is the key result of this chapter.

THEOREM 6.2 Let H1 and H2 be two heaps with n1 and n2 nodes respectively. Let
n = n1 + n2. The amortized cost of meld (H1, H2) is O(log n).

Proof Let h1 and h2 denote the number of heavy nodes in the right most paths of H1 and
H2 respectively. The number of light nodes on them will be at most �log n1
 and �log n2

respectively. Since a node other than root is either heavy or light, and there are two root
nodes here that are neither heavy or light, the total number of nodes in the right most
paths is at most

2 + h1 + h2 + �log n1
 + �log n2
 ≤ 2 + h1 + h2 + 2�logn

Thus we get a bound for actual cost c as

c ≤ 2 + h1 + h2 + 2�logn
 (6.1)

In the process of swapping, the h1 +h2 nodes that were right heavy, will lose their status
as right heavy. While they remain heavy, they become left children for their parents hence
they do not contribute for the potential of the output tree and this means a drop in potential
by h1 + h2. However, the swapping might have created new heavy nodes and let us say,
the number of new heavy nodes created in the swapping process is h3. First, observe that
all these h3 new nodes are attached to the left most path of the output tree. Secondly, by
Lemma 6.1, for each one of these right heavy nodes, its sibling in the left most path is a
light node. However, the number of light nodes in the left most path of the output tree is
less than or equal to �log n
 by Lemma 6.1.

Thus h3 ≤ �log n
. Consequently, the net change in the potential is h3 − h1 − h2 ≤
�log n
 − h1 − h2.

The amortized cost = c + potential difference
≤ 2 + h1 + h2 + 2�log n
 + �log n
 − h1 − h2

= 3�log n
 + 2.

Hence, the amortized cost of meld operation is O(log n) and this completes the proof.

© 2005 by Chapman & Hall/CRC

Skew Heaps 6-9

Since insert and delete-min are handled as special cases of meld operation, we conclude

THEOREM 6.3 The amortized cost complexity of all the Meldable Priority Queue op-
erations is O(log n) where n is the number of nodes in skew heap or heaps involved in the
operation.

6.4 Bibliographic Remarks

Skew Heaps were introduced by Sleator and Tarjan [7]. Leftist Trees have O(log n) worst
case complexity for all the Meldable Priority Queue operations but they require heights
of each subtree to be maintained as additional information at each node. Skew Heaps are
simpler than Leftist Trees in the sense that no additional ’balancing’ information need to be
maintained and the meld operation simply swaps the children of the right most path without
any constraints and this results in a simpler code. The bound 3 log2 n + 2 for melding was
significantly improved to logφ n(here φ denotes the well-known golden ratio (

√
5 + 1)/2

which is roughly 1.6) by using a different potential function and an intricate analysis in [6].
Recently, this bound was shown to be tight in [2]. Pairing Heap, introduced by Fredman
et al. [5], is yet another self-adjusting heap structure and its relation to Skew Heaps is
explored in Chapter 7 of this handbook.

References
[1] A. Aravind and C. Pandu Rangan, Symmetric Min-Max heaps: A simple data structure

for double-ended priority queue, Information Processing Letters, 69:197-199, 1999.
[2] B. Schoenmakers, A tight lower bound for top-down skew heaps, Information Pro-

cessing Letters, 61:279-284, 1997.
[3] S. Carlson, The Deap - A double ended heap to implement a double ended priority

queue, Information Processing Letters, 26: 33-36, 1987.
[4] S. Chang and M. Du, Diamond dequeue: A simple data structure for priority dequeues,

Information Processing Letters, 46:231-237, 1993.
[5] M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan, The pairing heap: A

new form of self-adjusting heap, Algorithmica, 1:111-129, 1986.
[6] A. Kaldewaij and B. Schoenmakers, The derivation of a tighter bound for top-down

skew heaps, Information Processing Letters, 37:265-271, 1991.
[7] D. D. Sleator and R. E. Tarjan, Self-adjusting heaps, SIAM J Comput., 15:52-69,

1986.

© 2005 by Chapman & Hall/CRC

