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7.1 Introduction

This chapter presents three algorithmically related data structures for implementing meld-
able priority queues: binomial heaps, Fibonacci heaps, and pairing heaps. What these three
structures have in common is that (a) they are comprised of heap-ordered trees, (b) the
comparisons performed to execute extractmin operations exclusively involve keys stored in
the roots of trees, and (c) a common side effect of a comparison between two root keys is
the linking of the respective roots: one tree becomes a new subtree joined to the other root.

A tree is considered heap-ordered provided that each node contains one item, and the key
of the item stored in the parent p(x) of a node x never exceeds the key of the item stored
in x. Thus, when two roots get linked, the root storing the larger key becomes a child of
the other root. By convention, a linking operation positions the new child of a node as its

Of the three data structures, the binomial heap structure was the first to be invented
(Vuillemin [13]), designed to efficiently support the operations insert, extractmin, delete,
and meld. The binomial heap has been highly appreciated as an elegant and conceptually
simple data structure, particularly given its ability to support the meld operation. The
Fibonacci heap data structure (Fredman and Tarjan [6]) was inspired by and can be viewed
as a generalization of the binomial heap structure. The raison d’être of the Fibonacci
heap structure is its ability to efficiently execute decrease-key operations. A decrease-key
operation replaces the key of an item, specified by location, by a smaller value: e.g. decrease-
key(P,knew,H). (The arguments specify that the item is located in node P of the priority
queue H, and that its new key value is knew.) Decrease-key operations are prevalent in
many network optimization algorithms, including minimum spanning tree, and shortest
path. The pairing heap data structure (Fredman, Sedgewick, Sleator, and Tarjan [5]) was
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leftmost child. Figure 7.1 illustrates these notions.
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FIGURE 7.1: Two heap-ordered trees and the result of their linking.

devised as a self-adjusting analogue of the Fibonacci heap, and has proved to be more
efficient in practice [11].

Binomial heaps and Fibonacci heaps are primarily of theoretical and historical interest.
The pairing heap is the more efficient and versatile data structure from a practical stand-
point. The following three sections describe the respective data structures. Summaries of
the various algorithms in the form of pseudocode are provided in section 7.5.

7.2 Binomial Heaps

We begin with an informal overview. A single binomial heap structure consists of a forest of
specially structured trees, referred to as binomial trees. The number of nodes in a binomial
tree is always a power of two. Defined recursively, the binomial tree B0 consists of a single
node. The binomial tree Bk, for k > 0, is obtained by linking two trees Bk−1 together;
one tree becomes the leftmost subtree of the other. In general Bk has 2k nodes.

An alternative and
useful way to view the structure of Bk Bk consists of a root
and subtrees (in order from left to right) Bk−1, Bk−2, · · · , B0. The root of the binomial
tree Bk has k children, and the tree is said to have rank k. We also observe that the height
of Bk (maximum number of edges on any path directed away from the root) is k. The

name “binomial heap” is inspired by the fact that the root of Bk has
(

k
j

)
descendants

at distance j.
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is depicted in Figure 7.2(c):
7.2(a-b) illustrate the recursion and show several trees in the series.

Figures
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(a) Recursion for binomial trees. (b) Several binomial trees.

(c) An alternative recursion.

FIGURE 7.2: Binomial trees and their recursions.

Because binomial trees have restricted sizes, a forest of trees is required to represent a
priority queue of arbitrary size. A key observation, indeed a motivation for having tree sizes
being powers of two, is that a priority queue of arbitrary size can be represented as a union
of trees of distinct sizes. (In fact, the sizes of the constituent trees are uniquely determined
and correspond to the powers of two that define the binary expansion of n, the size of the
priority queue.) Moreover, because the tree sizes are unique, the number of trees in the
forest of a priority queue of size n is at most lg(n + 1). Thus, finding the minimum key in
the priority queue, which clearly lies in the root of one of its constituent trees (due to the
heap-order condition), requires searching among at most lg(n + 1) tree roots.
gives an example of binomial heap.

Now let’s consider, from a high-level perspective, how the various heap operations are

to a large extent comprised of melding operations, and so we consider first the melding of
two heaps.

The melding of two heaps proceeds as follows: (a) the trees of the respective forests are
combined into a single forest, and then (b) consolidation takes place: pairs of trees having
common rank are linked together until all remaining trees have distinct ranks.
illustrates the process. An actual implementation mimics binary addition and proceeds in
much the same was as merging two sorted lists in ascending order. We note that insertion
is a special case of melding.

© 2005 by Chapman & Hall/CRC

performed. As with leftist heaps (cf. Chapter 6), the various priority queue operations are

Figure 7.3

Figure 7.4
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FIGURE 7.3: A binomial heap (showing placement of keys among forest nodes).

(a) Forests of two heaps Q1 and Q2 to be
melded.

(b) Linkings among trees in the combined
forest.

(c) Forest of meld(Q1,Q2).

FIGURE 7.4: Melding of two binomial heaps. The encircled objects reflect trees of common
rank being linked. (Ranks are shown as numerals positioned within triangles which in turn
represent individual trees.) Once linking takes place, the resulting tree becomes eligible
for participation in further linkings, as indicated by the arrows that identify these linking
results with participants of other linkings.

The extractmin operation is performed in two stages. First, the minimum root , the node
containing the minimum key in the data structure, is found by examining the tree roots of
the appropriate forest, and this node is removed. Next, the forest consisting of the subtrees

© 2005 by Chapman & Hall/CRC

of this removed root, whose ranks are distinct (see Figure 7.2(c)) and thus viewable as
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constituting a binomial heap, is melded with the forest consisting of the trees that remain
from the original forest. Figure 7.5 illustrates the process.

(a) Initial forest.

(b) Forests to be melded.

FIGURE 7.5: Extractmin Operation: The location of the minimum key is indicated in (a).
The two encircled sets of trees shown in (b) represent forests to be melded. The smaller
trees were initially subtrees of the root of the tree referenced in (a).

Finally, we consider arbitrary deletion. We assume that the node ν containing the item
to be deleted is specified. Proceeding up the path to the root of the tree containing ν, we
permute the items among the nodes on this path, placing in the root the item x originally
in ν, and shifting each of the other items down one position (away from the root) along the
path. This is accomplished through a sequence of exchange operations that move x towards
the root. The process is referred to as a sift-up operation. Upon reaching the root r, r is
then removed from the forest as though an extractmin operation is underway. Observe that
the re-positioning of items in the ancestors of ν serves to maintain the heap-order property
among the remaining nodes of the forest.
item being deleted to the root.

This completes our high-level descriptions of the heap operations. For navigational pur-
poses, each node contains a leftmost child pointer and a sibling pointer that points to the
next sibling to its right. The children of a node are thus stored in the linked list defined
by sibling pointers among these children, and the head of this list can be accessed by the
leftmost child pointer of the parent. This provides the required access to the children of
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Figure 7.6 illustrates the re-positioning of the
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FIGURE 7.6: Initial phase of deletion – sift-up operation.

a node for the purpose of implementing extractmin operations. Note that when a node
obtains a new child as a consequence of a linking operation, the new child is positioned at
the head of its list of siblings. To facilitate arbitrary deletions, we need a third pointer in
each node pointing to its parent. To facilitate access to the ranks of trees, we maintain in
each node the number of children it has, and refer to this quantity as the node rank. Node
ranks are readily maintained under linking operations; the node rank of the root gaining a

the children’s linked list. However, since the melding operation is implemented by accessing
the tree roots in ascending rank order, when deleting a root we first reverse the list order
of its children before proceeding with the melding.

Each of the priority queue operations requires in the worst case O(log n) time, where n
is the size of the heap that results from the operation. This follows, for melding, from the
fact that its execution time is proportional to the combined lengths of the forest lists being
merged. For extractmin, this follows from the time for melding, along with the fact that
a root node has only O(log n) children. For arbitrary deletion, the time required for the
sift-up operation is bounded by an amount proportional to the height of the tree containing
the item. Including the time required for extractmin, it follows that the time required for
arbitrary deletion is O(log n).

Detailed code for manipulating binomial heaps can be found in Weiss [14].

7.3 Fibonacci Heaps

Fibonacci heaps were specifically designed to efficiently support decrease-key operations.
For this purpose, the binomial heap can be regarded as a natural starting point. Why?
Consider the class of priority queue data structures that are implemented as forests of heap-
ordered trees, as will be the case for Fibonacci heaps. One way to immediately execute a
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child gets incremented. Figure 7.7 depicts these structural features.
As seen in Figure 7.2(c), the ranks of the children of a node form a descending sequence in
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(a) fields of a node. (b) a node and its three children.

FIGURE 7.7: Structure associated with a binomial heap node. Figure (b) illustrates the
positioning of pointers among a node and its three children.

decrease-key operation, remaining within the framework of heap-ordered forests, is to simply
change the key of the specified data item and sever its link to its parent, inserting the severed
subtree as a new tree in the forest. (Observe that the
link to the parent only needs to be cut if the new key value is smaller than the key in the
parent node, violating heap-order.) Fibonacci heaps accomplish this without degrading the
asymptotic efficiency with which other priority queue operations can be supported. Observe
that to accommodate node cuts, the list of children of a node needs to be doubly linked.
Hence the nodes of a Fibonacci heap require two sibling pointers.

Fibonacci heaps support findmin, insertion, meld, and decrease-key operations in constant
amortized time, and deletion operations in O(log n) amortized time. For many applications,
the distinction between worst-case times versus amortized times are of little significance. A
Fibonacci heap consists of a forest of heap-ordered trees. As we shall see, Fibonacci heaps
differ from binomial heaps in that there may be many trees in a forest of the same rank, and
there is no constraint on the ordering of the trees in the forest list. The heap also includes
a pointer to the tree root containing the minimum item, referred to as the min-pointer ,

illustrates certain structural aspects.
The impact of severing subtrees is clearly incompatible with the pristine structure of the

binomial tree that is the hallmark of the binomial heap. Nevertheless, the tree structures
that can appear in the Fibonacci heap data structure must sufficiently approximate binomial
trees in order to satisfy the performance bounds we seek. The linking constraint imposed by
binomial heaps, that trees being linked must have the same size, ensures that the number of
children a node has (its rank), grows no faster than the logarithm of the size of the subtree
rooted at the node. This rank versus subtree size relation is key to obtaining the O(log n)
deletion time bound. Fibonacci heap manipulations are designed with this in mind.

Fibonacci heaps utilize a protocol referred to as cascading cuts to enforce the required
rank versus subtree size relation. Once a node ν has had two of its children removed as a
result of cuts, ν’s contribution to the rank of its parent is then considered suspect in terms
of rank versus subtree size. The cascading cut protocol requires that the link to ν’s parent

© 2005 by Chapman & Hall/CRC

Figure 7.8 illustrates the process.

that facilitates findmin operations. Figure 7.9 provides an example of a Fibonacci heap and
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(a) Initial tree. (b) Subtree to be severed.

(c) Resulting changes

FIGURE 7.8: Immediate decrease-key operation. The subtree severing (Figures (b) and
(c)) is necessary only when k′ < j.

be cut, with the subtree rooted at ν then being inserted into the forest as a new tree. If ν’s
parent has, as a result, had a second child removed, then it in turn needs to be cut, and the
cuts may thus cascade. Cascading cuts ensure that no non-root node has had more than
one child removed subsequent to being linked to its parent.

We keep track of the removal of children by marking a node if one of its children has been
cut. A marked node that has another child removed is then subject to being cut from its
parent. When a marked node becomes linked as a child to another node, or when it gets

Now the induced node cuts under the cascading cuts protocol, in contrast with those
primary cuts immediately triggered by decrease-key operations, are bounded in number by
the number of primary cuts. (This follows from consideration of a potential function defined
to be the total number of marked nodes.) Therefore, the burden imposed by cascading cuts
can be viewed as effectively only doubling the number of cuts taking place in the absence of
the protocol. One can therefore expect that the performance asymptotics are not degraded
as a consequence of proliferating cuts. As with binomial heaps, two trees in a Fibonacci
heap can only be linked if they have equal rank. With the cascading cuts protocol in place,
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cut from its parent, it gets unmarked. Figure 7.10 illustrates the protocol of cascading cuts.
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(a) a heap

(b) fields of a node. (c) pointers among a node and its three
children.

FIGURE 7.9: A Fibonacci heap and associated structure.

we claim that the required rank versus subtree size relation holds, a matter which we address
next.

Let’s consider how small the subtree rooted at a node ν having rank k can be. Let ω
be the mth child of ν from the right. At the time it was linked to ν, ν had at least m − 1
other children (those currently to the right of ω were certainly present). Therefore ω had
rank at least m− 1 when it was linked to ν. Under the cascading cuts protocol, the rank of
ω could have decreased by at most one after its linking to ν; otherwise it would have been
removed as a child. Therefore, the current rank of ω is at least m − 2. We minimize the
size of the subtree rooted at ν by minimizing the sizes (and ranks) of the subtrees rooted at

© 2005 by Chapman & Hall/CRC
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(a) Before decrease-key. (b) After decrease-key.

FIGURE 7.10: Illustration of cascading cuts. In (b) the dashed lines reflect cuts that have
taken place, two nodes marked in (a) get unmarked, and a third node gets marked.

ν’s children. Now let Fj denote the minimum possible size of the subtree rooted at a node
of rank j, so that the size of the subtree rooted at ν is Fk. We conclude that (for k ≥ 2)

Fk = Fk−2 + Fk−3 + · · · + F0 + 1︸ ︷︷ ︸
k terms

+1

where the final term, 1, reflects the contribution of ν to the subtree size. Clearly, F0 = 1
and F1

recurrence, it is readily shown that Fk is given by the (k + 2)th Fibonacci number (from
whence the name “Fibonacci heap” was inspired). Moreover, since the Fibonacci numbers
grow exponentially fast, we conclude that the rank of a node is indeed bounded by the
logarithm of the size of the subtree rooted at the node.

We proceed next to describe how the various operations are performed.
Since we are not seeking worst-case bounds, there are economies to be exploited that

could also be applied to obtain a variant of Binomial heaps. (In the absence of cuts, the
individual trees generated by Fibonacci heap manipulations would all be binomial trees.) In
particular we shall adopt a lazy approach to melding operations: the respective forests are
simply combined by concatenating their tree lists and retaining the appropriate min-pointer.
This requires only constant time.

An item is deleted from a Fibonacci heap by deleting the node that originally contains it,
in contrast with Binomial heaps. This is accomplished by (a) cutting the link to the node’s
parent (as in decrease-key) if the node is not a tree root, and (b) appending the list of
children of the node to the forest. Now if the deleted node happens to be referenced by the
min-pointer, considerable work is required to restore the min-pointer – the work previously
deferred by the lazy approach to the operations. In the course of searching among the roots

© 2005 by Chapman & Hall/CRC

= 2. See Figure 7.11 for an illustration of this construction. Based on the preceding
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FIGURE 7.11: Minimal tree of rank k. Node ranks are shown adjacent to each node.

of the forest to discover the new minimum key, we also link trees together in a consolidation
process.

Consolidation processes the trees in the forest, linking them in pairs until there are
no longer two trees having the same rank, and then places the remaining trees in a new
forest list (naturally extending the melding process employed by binomial heaps). This can
be accomplished in time proportional to the number of trees in forest plus the maximum
possible node rank. Let max-rank denote the maximum possible node rank. (The preceding
discussion implies that max-rank = O(log heap-size).) Consolidation is initialized by setting
up an array A of trees (initially empty) indexed by the range [0,max-rank]. A non-empty
position A[d] of A contains a tree of rank d. The trees of the forest are then processed
using the array A as follows. To process a tree T of rank d, we insert T into A[d] if this
position of A is empty, completing the processing of T. However, if A[d] already contains a
tree U, then T and U are linked together to form a tree W, and the processing continues
as before, but with W in place of T, until eventually an empty location of A is accessed,
completing the processing associated with T. After all of the trees have been processed in
this manner, the array A is scanned, placing each of its stored trees in a new forest. Apart
from the final scanning step, the total time necessary to consolidate a forest is proportional
to its number of trees, since the total number of tree pairings that can take place is bounded
by this number (each pairing reduces by one the total number of trees present). The time
required for the final scanning step is given by max-rank = log(heap-size).

The amortized timing analysis of Fibonacci heaps considers a potential function defined
as the total number of trees in the forests of the various heaps being maintained. Ignoring
consolidation, each operation takes constant actual time, apart from an amount of time
proportional to the number of subtree cuts due to cascading (which, as noted above, is only
constant in amortized terms). These cuts also contribute to the potential. The children of a
deleted node increase the potential by O(log heap-size). Deletion of a minimum heap node
additionally incurs the cost of consolidation. However, consolidation reduces our potential,
so that the amortized time it requires is only O(log heap-size). We conclude therefore that
all non-deletion operations require constant amortized time, and deletion requires O(log n)
amortized time.

An interesting and unresolved issue concerns the protocol of cascading cuts. How would
the performance of Fibonacci heaps be affected by the absence of this protocol?

Detailed code for manipulating Fibonacci heaps can found in Knuth [9].

© 2005 by Chapman & Hall/CRC
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7.4 Pairing Heaps

The pairing heap was designed to be a self-adjusting analogue of the Fibonacci heap, in
much the same way that the skew heap is a self-adjusting analogue of the leftist heap

The only structure maintained in a pairing heap node, besides
item information, consists of three pointers: leftmost child, and two sibling pointers. (The
leftmost child of a node uses it left sibling pointer to point to its parent, to facilitate updating

FIGURE 7.12: Pointers among a pairing heap node and its three children.

The are no cascading cuts – only simple cuts for decrease-key and deletion operations.
With the absence of parent pointers, decrease-key operations uniformly require a single cut
(removal from the sibling list, in actuality), as there is no efficient way to check whether
heap-order would otherwise be violated. Although there are several varieties of pairing
heaps, our discussion presents the two-pass version (the simplest), for which a given heap
consists of only a single tree. The minimum element is thus uniquely located, and melding
requires only a single linking operation. Similarly, a decrease-key operation consists of a
subtree cut followed by a linking operation. Extractmin is implemented by removing the
tree root and then linking the root’s subtrees in a manner described below. Other deletions
involve (a) a subtree cut, (b) an extractmin operation on the cut subtree, and (c) linking
the remnant of the cut subtree with the original root.

The extractmin operation combines the subtrees of the root using a process referred to
as two-pass pairing. Let x1, · · · , xk be the subtrees of the root in left-to-right order. The
first pass begins by linking x1 and x2. Then x3 and x4 are linked, followed by x5 and x6,
etc., so that the odd positioned trees are linked with neighboring even positioned trees. Let
y1, · · · , yh , h = �k/2� , be the resulting trees, respecting left-to-right order. (If k is odd,
then y�k/2� is xk.) The second pass reduces these to a single tree with linkings that proceed
from right-to-left. The rightmost pair of trees, yh and yh−1 are linked first, followed by the
linking of yh−2 with the result of the preceding linking etc., until finally we link y1 with the

2 h

Since two-pass pairing is not particularly intuitive, a few motivating remarks are offered.
The first pass is natural enough, and one might consider simply repeating the process on
the remaining trees, until, after logarithmically many such passes, only one tree remains.
Indeed, this is known as the multi-pass variation. Unfortunately, its behavior is less under-
stood than that of the two-pass pairing variation.

The second (right-to-left) pass is also quite natural. Let H be a binomial heap with exactly
2k items, so that it consists of a single tree. Now suppose that an extractmin followed by

© 2005 by Chapman & Hall/CRC

(See Chapters 5 and 6).

structure formed from the linkings of y , · · · , y . See Figure 7.13.

the leftmost child pointer its parent.) See Figure 7.12 for an illustration of pointer structure.
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. . .

(a) first pass.

B ACDS . . .

(b) second pass.

FIGURE 7.13: Two-pass Pairing. The encircled trees get linked. For example, in (b) trees
A and B get linked, and the result then gets linked with the tree C, etc.

an insertion operation are executed. The linkings that take place among the subtrees of the
deleted root (after the new node is linked with the rightmost of these subtrees) entail the
right-to-left processing that characterizes the second pass. So why not simply rely upon a
single right-to-left pass, and omit the first? The reason, is that although the second pass
preserves existing balance within the structure, it doesn’t improve upon poorly balanced
situations (manifested when most linkings take place between trees of disparate sizes). For
example, using a single-right-to-left-pass version of a pairing heap to sort an increasing
sequence of length n (n insertions followed by n extractmin operations), would result in an
n2 sorting algorithm. (Each of the extractmin operations yields a tree of height 1 or less.)

If we consider the child, sibling representation that maps a forest of arbitrary trees into a
binary tree, then two-pass pairing can be viewed as a splay operation on a search tree path
with no bends [5]. The analysis for splay trees then carries over to provide an amortized
analysis for pairing heaps.

The asymptotic behavior of pairing heaps is an interesting and unresolved matter. Re-
flecting upon the tree structures we have encountered in this chapter, if we view the binomial
trees that comprise binomial heaps, their structure highly constrained, as likened to perfectly
spherical masses of discrete diameter, then the trees that comprise Fibonacci heaps can be
viewed as rather rounded masses, but rarely spherical, and of arbitrary (non-discrete) size.
Applying this imagery to the trees that arise from pairing heap manipulations, we can aptly
liken these trees to chunks of clay subject to repeated tearing and compaction, typically
irregular in form. It is not obvious, therefore, that pairing heaps should be asymptotically
efficient. On the other hand, since the pairing heap design dispenses with the rather com-
plicated, carefully crafted constructs put in place primarily to facilitate proving the time
bounds enjoyed by Fibonacci heaps, we can expect efficiency gains at the level of elemen-

© 2005 by Chapman & Hall/CRC

See Section 7.6, however, for an interesting twist.
In actuality two-pass pairing was inspired [5] by consideration of splay trees (Chapter 12).
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tary steps such as linking operations. From a practical standpoint the data structure is
a success, as seen from the study of Moret and Shapiro [11]. Also, for those applications
for which decrease-key operations are highly predominant, pairing heaps provably meet the
optimal asymptotic bounds characteristic of Fibonacci heaps [3]. But despite this, as well
as empirical evidence consistent with optimal efficiency in general, pairing heaps are in
fact asymptotically sub-optimal for certain operation sequences [3]. Although decrease-key
requires only constant worst-case time, its execution can asymptotically degrade the effi-
ciency of extractmin operations, even though the effect is not observable in practice. On
the positive side, it has been demonstrated [5] that under all circumstances the operations
require only O(log n) amortized time. Additionally, Iacono [7] has shown that insertions
require only constant amortized time; significant for those applications that entail many
more insertions than deletions.

The reader may wonder whether some alternative to two-pass pairing might provably
attain the asymptotic performance bounds satisfied by Fibonacci heaps. However, for
information-theoretic reasons no such alternative exists. (In fact, this is how we know
the two-pass version is sub-optimal.) A precise statement and proof of this result appears
in Fredman [3].

Detailed code for manipulating pairing heaps can be found in Weiss [14].

7.5 Pseudocode Summaries of the Algorithms

This section provides pseudocode reflecting the above algorithm descriptions. The proce-
dures, link and insert, are sufficiently common with respect to all three data structures, that
we present them first, and then turn to those procedures having implementations specific
to a particular data structure.

7.5.1 Link and Insertion Algorithms

Function link(x,y){
// x and y are tree roots. The operation makes the root with the
// larger key the leftmost child of the other root. For binomial and
// Fibonacci heaps, the rank field of the prevailing root is
// incremented. Also, for Fibonacci heaps, the node becoming the child
// gets unmarked if it happens to be originally marked. The function
// returns a pointer to the node x or y that becomes the root.

}

Algorithm Insert(x,H){
//Inserts into heap H the item x
I = Makeheap(x)

// Creates a single item heap I containing the item x.
H = Meld(H,I).

}

© 2005 by Chapman & Hall/CRC
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7.5.2 Binomial Heap-Specific Algorithms

Function Meld(H,I){
// The forest lists of H and I are combined and consolidated -- trees
// having common rank are linked together until only trees of distinct
// ranks remain. (As described above, the process resembles binary
// addition.) A pointer to the resulting list is returned. The
// original lists are no longer available.

}

Function Extractmin(H){
//Returns the item containing the minimum key in the heap H.
//The root node r containing this item is removed from H.
r = find-minimum-root(H)
if(r = null){return "Empty"}
else{

x = item in r
H = remove(H,r)

// removes the tree rooted at r from the forest of H
I = reverse(list of children of r)
H = Meld(H,I)
return x

}
}

Algorithm Delete(x,H)
//Removes from heap H the item in the node referenced by x.
r = sift-up(x)

// r is the root of the tree containing x. As described above,
// sift-up moves the item information in x to r.

H = remove(H,r)
// removes the tree rooted at r from the forest of H

I = reverse(list of children of r)
H = Meld(H,I)

}

7.5.3 Fibonacci Heap-Specific Algorithms

Function Findmin(H){
//Return the item in the node referenced by the min-pointer of H
//(or "Empty" if applicable)

}

Function Meld(H,I){
// The forest lists of H and I are concatenated. The keys referenced
// by the respective min-pointers of H and I are compared, and the
// min-pointer referencing the larger key is discarded. The concatenation
// result and the retained min-pointer are returned. The original
// forest lists of H and I are no longer available.

}
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Algorithm Cascade-Cut(x,H){
//Used in decrease-key and deletion. Assumes parent(x) != null
y = parent(x)
cut(x,H)

// The subtree rooted at x is removed from parent(x) and inserted into
// the forest list of H. The mark-field of x is set to FALSE, and the
// rank of parent(x) is decremented.

x = y
while(x is marked and parent(x) != null){

y = parent(x)
cut(x,H)
x = y

}
Set mark-field of x = TRUE

}

Algorithm Decrease-key(x,k,H){
key(x) = k
if(key of min-pointer(H) > k){ min-pointer(H) = x}
if(parent(x) != null and key(parent(x)) > k){ Cascade-Cut(x,H)}

}

Algorithm Delete(x,H){
If(parent(x) != null){

Cascade-Cut(x,H)
forest-list(H) = concatenate(forest-list(H), leftmost-child(x))
H = remove(H,x)

// removes the (single node) tree rooted at x from the forest of H
}
else{

forest-list(H) = concatenate(forest-list(H), leftmost-child(x))
H = remove(H,x)
if(min-pointer(H) = x){

consolidate(H)
// trees of common rank in the forest list of H are linked
// together until only trees having distinct ranks remain. The
// remaining trees then constitute the forest list of H.
// min-pointer is reset to reference the root with minimum key.

}
}

}

7.5.4 Pairing Heap-Specific Algorithms

Function Findmin(H){
// Returns the item in the node referenced by H (or "empty" if applicable)

}

Function Meld(H,I){
return link(H,I)

}
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Function Decrease-key(x,k,H){
If(x != H){

Cut(x)
// The node x is removed from the child list in which it appears

key(x) = k
H = link(H,x)

}
else{ key(H) = k}

}

Function Two-Pass-Pairing(x){
// x is assumed to be a pointer to the first node of a list of tree
// roots. The function executes two-pass pairing to combine the trees
// into a single tree as described above, and returns a pointer to
// the root of the resulting tree.

}

Algorithm Delete(x,H){
y = Two-Pass-Pairing(leftmost-child(x))
if(x = H){ H = y}
else{

Cut(x)
// The subtree rooted at x is removed from its list of siblings.

H = link(H,y)
}

}

7.6 Related Developments

In this section we describe some results pertinent to the data structures of this chapter.
First, we discuss a variation of the pairing heap, referred to as the skew-pairing heap. The
skew-pairing heap appears as a form of “missing link” in the landscape occupied by pairing

heaps. Finally, we take note of soft heaps, a new shoot of activity emanating from the
primordial binomial heap structure that has given rise to the topics of this chapter.

Skew-Pairing Heaps

There is a curious variation of the pairing heap which we refer to as a skew-pairing heap
– the name will become clear. Aside from the linking process used for combining subtrees
in the extractmin operation, skew-pairing heaps are identical to two-pass pairing heaps.
The skew-pairing heap extractmin linking process places greater emphasis on right-to-left
linking than does the pairing heap, and proceeds as follows.

First, a right-to-left linking of the subtrees that fall in odd numbered positions is executed.
Let Hodd denote the result. Similarly, the subtrees in even numbered positions are linked
in right-to-left order. Let Heven denote the result. Finally, we link the two trees, Hodd and
Heven

The skew-pairing heap enjoys O(log n) time bounds for the usual operations. Moreover,
it has the following curious relationship to the skew heap. Suppose a finite sequence S of
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heaps and skew heaps (Chapter 6). Second, we discuss some adaptive properties of pairing

. Figure 7.14 illustrates the process.
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(a) subtrees before linking.

(b) linkings.

FIGURE 7.14: Skew-pairing heap: linking of subtrees performed by extractmin. As de-

meld and extractmin operations is executed (beginning with heaps of size 1) using (a) a
skew heap and (b) a skew-pairing heap. Let Cs and Cs−p be the respective sets of compar-
isons between keys that actually get performed in the course of the respective executions
(ignoring the order of the comparison executions). Then Cs−p ⊂ Cs [4]. Moreover, if the
sequence S terminates with the heap empty, then Cs−p = Cs. (This inspires the name
“skew-pairing”.) The relationship between skew-pairing heaps and splay trees is also inter-
esting. The child, sibling transformation, which for two-pass pairing heaps transforms the
extractmin operation into a splay operation on a search tree path having no bends, when
applied to the skew-pairing heap, transforms extractmin into a splay operation on a search
tree path having a bend at each node. Thus, skew-pairing heaps and two-pass pairing heaps
demarcate opposite ends of a spectrum.

Adaptive Properties of Pairing Heaps

Consider the problem of merging k sorted lists of respective lengths n1, n2, · · · , nk, with∑
ni = n. The standard merging strategy that performs lg k rounds of pairwise list

merges requires n lg k time. However, a merge pattern based upon the binary Huffman
tree, having minimal external path length for the weights n1, n2, · · · , nk, is more efficient
when the lengths ni are non-uniform, and provides a near optimal solution. Pairing heaps
can be utilized to provide a rather different solution as follows. Treat each sorted list as a
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scribed in Figure 7.13, encircled trees become linked.
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linearly structured pairing heap. Then (a) meld these k heaps together, and (b) repeatedly
execute extractmin operations to retrieve the n items in their sorted order. The number of
comparisons that take place is bounded by

O(log
(

n
n1, · · · , nk

)
)

Since the above multinomial coefficient represents the number of possible merge patterns,
the information-theoretic bound implies that this result is optimal to within a constant
factor. The pairing heap thus self-organizes the sorted list arrangement to approximate
an optimal merge pattern. Iacono has derived a “working-set” theorem that quantifies a
similar adaptive property satisfied by pairing heaps. Given a sequence of insertion and
extractmin operations initiated with an empty heap, at the time a given item x is deleted
we can attribute to x a contribution bounded by O(log op(x)) to the total running time of
the sequence, where op(x) is the number of heap operations that have taken place since x

bound applies for skew and skew-pairing heaps [8]. Knuth [10] has observed, at least in
qualitative terms, similar behavior for leftist heaps . Quoting Knuth:

Leftist trees are in fact already obsolete, except for applications with a strong
tendency towards last-in-first-out behavior.

Soft Heaps

An interesting development (Chazelle [1]) that builds upon and extends binomial heaps in
a different direction is a data structure referred to as a soft heap. The soft heap departs
from the standard notion of priority queue by allowing for a type of error, referred to as
corruption, which confers enhanced efficiency. When an item becomes corrupted, its key
value gets increased. Findmin returns the minimum current key, which might or might not
be corrupted. The user has no control over which items become corrupted, this prerogative
belonging to the data structure. But the user does control the overall amount of corruption
in the following sense.

The user specifies a parameter, 0 < ε ≤ 1/2, referred to as the error rate, that governs
the behavior of the data structure as follows. The operations findmin and deletion are
supported in constant amortized time, and insertion is supported in O(log 1/ε) amortized
time. Moreover, no more than an ε fraction of the items present in the heap are corrupted
at any given time.

To illustrate the concept, let x be an item returned by findmin, from a soft heap of size
n. Then there are no more than εn items in the heap whose original keys are less than the
original key of x.

Soft heaps are rather subtle, and we won’t attempt to discuss specifics of their design. Soft
heaps have been used to construct an optimal comparison-based minimum spanning tree
algorithm (Pettie and Ramachandran [12]), although its actual running time has not been
determined. Soft heaps have also been used to construct a comparison-based algorithm with
known running time mα(m, n) on a graph with n vertices and m edges (Chazelle [2]), where
α(m, n) is a functional inverse of the Ackermann function. Chazelle [1] has also observed
that soft heaps can be used to implement median selection in linear time; a significant
departure from previous methods.
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was inserted (see [8] for a slightly tighter estimate). Iacono has also shown that this same
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